NEW BUNCH LENGTH MONITOR UTILIZING A DETECTION OF ELECTROMAGNETIC FIELDS IN MILLIMETER-WAVE REGION

Tsuyoshi Suwada¹,

Accelerator Laboratory, High Energy Accelerator Research Organization, 1-1 Oho, Tsukuba, Ibaraki, 305-0801

Abstract

A new nondestructive bunch-length monitor has been numerically investigated. The monitor detects electromagnetic fields generated through a ceramic gap of a vacuum pipe when a charged particle beam passes through the pipe gap. The frequency spectrum of the electromagnetic fields detected in wave zone spreads over a millimeter-wave length from a microwave length region for a short pulse beam with a bunch length of picosecond range. The frequency spectrum strongly depends on the bunch length of a relativistic charged beam if the geometrical structure of the pipe gap is fixed. The detection principle of the bunch-length monitor and some numerical analysis results applied to a single-bunch electron beam of the KEKB injector linac are described in this report.

ミリ波領域の電磁波計測を応用したバンチ長モニター

1. 概要

電子線形加速器で加速されるピコ秒短パルス電子 ビームを診断する新しい非破壊型バンチ長モニター の特性を解析した。電子ビームが真空パイプの ギャップを通過するとき、ギャップから電磁波が放 射される。特に、ピコ秒短パルスビームの場合、電 磁放射の周波数スペクトルは、バンチ長に強く依存 しマイクロ波からミリ波領域に及ぶ。新しいバンチ 長モニターは、このような電磁放射の周波数スペク トルを広範な周波数領域で計測し、バンチ長の推定 を行う。本稿では、新しいバンチ長モニターの原理 ついて述べるとともに、KEKB入射器における単バ ンチ電子ビームのバンチ長計測の可能性について検 討を行う。

2. はじめに

電子線形加速器において、電子ビームのバンチ長 計測は、ビームの品質を決める重要な診断技術のひ とつである。ビームをガスや薄膜に透過させて、 チェレンコフ放射や遷移放射等の光放射に変換し、 高速ストリークカメラでバンチ長を計測する方法が 一般的である。最近では、電磁場に対する非線形結 晶の高速応答性を利用してサブピコ秒のバンチ長計 測も試みられている。これらの方法は、何れも光放 射や非線形結晶の高速応答性を利用し、時間領域で 直接的にパルス計測を行うので、ピコ(またはサブ ピコ)秒短パルス電子ビームのバンチ長計測には、 優れた方法である。しかしながら、破壊型である、 測定の簡便性に欠く、測定装置が高価である等々の 欠点も同時にあわせもつ。

このような従来のモニターに替わり、ミリ波領域

の電磁波計測を応用した新しいバンチ長モニターの 特性を数値計算に基づき評価した。

KEKB入射器は、下流の4つの蓄積リング(KEKB e^{e+}, PF, PF-AR)に電子または陽電子ビームを供給し ている。バンチ長は、主に入射部直後で,金属板に ビームを照射した際に生じる遷移放射をストリーク カメラに導いて計測される。この方法では、異なる 入射ビームのバンチ長計測を入射器下流の複数の箇 所で行うことは容易ではない。

入射器では、ビーム電流計測のためのセラミック ギャップが付いた真空パイプが多数存在する。電子 ビームがこのギャップを通過するとき、ギャップか ら電磁波が放射される。この電磁放射を検出して、 バンチ長の推定ができれば、ビームラインの余計な 変更を必要とせず、複数の箇所でバンチ長のモニ ターが非破壊で可能になる。目指すところは、安価 で簡便な計測システムを構築することにある。

3. 電磁放射の特性

荷電粒子が真空パイプの中を相対論的速度で走行 するとき、パイプ内壁には、反対電荷をもつ鏡像電 荷が誘起され荷電粒子と同時に走行する。荷電粒子 と鏡像電荷間に生じる電磁場(自己場)は、進行方向 にブーストされ、パンケーキ状に横方向に押し縮め られる。このような自己場がパイプギャップを通過 すると、金属導体の不連続な境界に遭遇することに なるが、電磁場の境界条件を満たすべく自己場の一 部がギャップから波動帯に電磁波として放射される。

電磁放射の性質は、荷電粒子の電荷量とエネル ギーを一定とすると、ギャップの幾何学的大きさ

¹ E-mail: tsuyoshi.suwada@kek.jp

(図1(a))により決まる。一方、荷電粒子の集群した ビームがギャップを通過する場合、三次元的なビー ムの拡がりを考慮した電荷分布も電磁放射の特性に 影響を与えることになる。

この現象に類似して、有限長の金属パイプの一端 に励振源を置き、開口端の他端から電磁波を送信す るときの放射特性が厳密に解析されている[1]。こ の考えを応用すると、開口端から放射された電磁波 の大部分は透過波として進行するが、その一部は、 端面の境界条件により反射される。さらに、透過波 も他のパイプ開口端に入射すると、その一部は、同 様に反射される。このように、パイプギャップでは ビーム自己場が多重的に散乱され、一部が回折によ りギャップから干渉性電磁波として自由空間に放射 される。このようなギャップから漏出る電磁放射の 様子を図1(b)に示した。

図1:(a) 真空パイプとギャップの幾何学的大きさ、 (b) 荷電粒子がギャップを通過するときの干渉性電 磁放射の模式図

Betheの小開口からの回折放射理論[2]によると、 パイプ壁に開いた小開口平面上には、開口を閉じた 面(金属壁)に誘導される電場と磁場ベクトルの向き に一致した電気双極子と磁気双極子がそれぞれ誘起 される。このような双極子の振動が、電磁放射を誘 発するのである。双極子振動による電磁放射の角分 布は、1軸の方向に最小となり、2軸に平行な方向に 最大となる特徴をもつ。

以上は、電磁放射の定性的な議論であるが、この 問題を厳密に解くことは難しい。Palumbo[3]や Kheifets[4]は、解析的にこの問題を解き、荷電粒子 の電磁放射によるエネルギー損失を近似的に導いた。 (1)式に、単位立体角当りの電磁放射強度 $(dW(\theta)/d\Omega)$ の関係式を示す。

$$\frac{dW(\theta)}{d\Omega} = \frac{\alpha h\beta N^2 \sin^2 \theta \cdot J_0^2 (ka \sin \theta)}{\pi (1 - \beta \cos \theta)^2 I_0^2 (ka / \beta \gamma)} \left| \frac{L_-(\omega / \nu) \sqrt{1 - \beta}}{L_-(k \cos \theta) \sqrt{1 - \cos \theta}} e^{-jkl(1 - \beta \cos \theta) / \beta} \right|$$

$$-j\frac{L_{+}(\omega/\nu)\sqrt{1+\beta}}{L_{+}(k\cos\theta)\sqrt{1+\cos\theta}}e^{jkl(1-\beta\cos\theta)/\beta}\Big|^{2}(1)$$

ただし、ここでは、ギャップ間で多重散乱する電 磁放射の高次項による寄与は、小さいとして無視し ている。ここで、 α :微細構造定数、 $\hbar = h/2\pi$ (h:プ ランク定数)、v:ビーム速度、 $\beta = v/c$ 、 θ :放射角、 ω : 電磁放射の角周波数、 $k = \omega / c$ (k:電磁放射の波数、 c:光速度)、 γ :ビームエネルギー、 J_0 :第1種ベッセ ル関数、 I_0 :第1種変形ベッセル関数を表す。その他 のパラメータは、図1 (a)に定義した。 L_{\pm} は、 Wiener-Hopfのfactorization[5]で導入される関数であ る。

$$L_{+}(\alpha) = j\Gamma_{+}(\alpha)\sqrt{\alpha+k}$$
⁽²⁾

$$L_{-}(\alpha) = -j\sqrt{k-\alpha} / \Gamma_{-}(\alpha)$$
(3)

$$+ j \frac{\alpha a}{\pi} PV \int_{ka} dt \frac{m[2 \mathcal{L}_2 I_0 (\mathcal{L}_2) \mathbf{K}_0 (\mathcal{L}_2)]}{t^2 - \alpha^2 a^2}$$
(4)

ここで、 $H_0^{(1)}$:第1種ハンケル関数、 K_0 :第2種変形 ベッセル関数を表し、各変数は、以下の通りである。

 $\Sigma^2 = a^2 (\alpha^2 - k^2), \Sigma_1^2 = k^2 a^2 - t^2, \Sigma_2^2 = t^2 - k^2 a^2$ (5) (1)式による電磁放射の角分布は、相対論的に取 り扱われ、放射角度を一定とすると周波数スペクト ルを与える基本式になっている。また、(1)式右辺 は、左開口端(第1項)と右開口端(第2項)からの放 射の和からなり、電磁放射の干渉性を示している。

4. 電磁放射の解析

(1)式をz軸方向に拡がりをもつビームに適用する には、z軸方向の電荷分布を重み関数として積分す ればよいが、これを解析的に解くのはきわめて困難 である。計算を容易にするために、ビームの電荷分 布はガウシアン関数に従うものとして、離散的にマ クロ粒子を配置し、各マクロ粒子からの電磁放射の 複素振幅和をとり(1)式に従い数値計数を行った。 計算精度と時間を考慮して、マクロ粒子の数を6と し、±3 σ_t(σ_i:バンチ長)内に等間隔で配置した。また、 ギャップの幾何学的大きさは、入射器の標準的なパ イプギャップ(直径60mmφ, ギャップ長12mm)とした。 図 2 に、電磁放射の周波数スペクトラム(エネル ギー1GeV)の一例を示す。ここでは、簡単のために エネルギー拡がりやセラミックでの高周波損失は考 慮していない。

周波数スペクトルは、周期的なディップ構造を もち、電磁放射が干渉性であることを示す。ディッ プ位置の周波数とその深さは、ギャップの幾何学大 きさで決まる。図中の太実線は、各スペクトルの ディップ両端の頂点を結んだ包絡線を示し、より短 いバンチ長ほどミリ波帯でのパワー出力が大きいこ とがわかる。KEKB(バンチ長:~10ps(FWHM))の場合 は、*σ_i* =5psに近いスペクトルが期待される。このように、ミリ波帯(> 20GHz)では、スペクトルの分布はピコ秒の違いでも顕著になる。

図2:バンチ長をパラメータとした電磁放射の周波 数スペクトル。放射角θ=π/2。

スペクトルの違いをさらに定量化するために、 各スペクトルから作った包絡線を議論すると分かり やすい。図3は、包絡線データを取出し、1GHzの データで規格化したスペクトルを示す。今度は、バ ンチ長をσ,=5psに固定し、エネルギーをパラメータ としている。

図3:エネルギーをパラメータとした時の周波数ス ペクトルの変化。放射角*θ=π*/2。

リニアスケールで描いた電磁放射の強度分布は、 スペクトルのピークを与える臨界周波数とピーク強 度をパラメータとするとその特徴を表すことができ る。図4は、バンチ長とエネルギーをパラメータと し、各スペクトルから得られる臨界周波数とピーク 強度との関係をプロットしたものである。

この結果は、高エネルギーほど相対論的に自己 場が大きくブーストされ、波動体での放射強度が大 きくなること、また、バンチ長が短いほど電磁放射 の臨界周波数が高くなることを示し、物理現象とし ても理解できる。この関係が、測定されるスペクト ルからエネルギーとバンチ長に変換する相関図 (マッピング)を与える。この図からわかるように、 エネルギー分解能は、バンチ長に比べ優位ではなく、 バンチ長に感度がより高いことを示す。また、短い バンチ長ほど感度が高くなるという特徴をもつ。

図4:臨界周波数に対する規格化したピークパワー 強度の関係。放射角 0-π/2。

KEKB入射の場合、Δf~1GHzの分解能で臨界周波数が計測できれば、Δσ_i~lpsの分解能が十分達成できる範囲に入る。計測系としては、ミリ波用アンテナで電磁放射を検出し、中心周波数が可変な狭帯域のバンドパスフィルター(BPF)により周波数を掃引しながら、ミリ波パルスのピーク・パワーを計測するシステムとなる。図2より臨界周波数が計測可能な(ピーク・パワー>1W•sec/nC)領域を計測するとして、BPFの帯域幅をΔω(Δf~1MHz)として計測されるピーク・パワー(単位立体角当り)は、~-54dBm/nCとなりパワーメータでの計測が可能な領域にある。

5. まとめ

電子線形加速器で加速されるピコ秒短パルス電子 ビームを診断する新しい非破壊型バンチ長モニター の特性を解析した。この結果、KEKB入射用ピコ秒 単バンチ電子ビームのバンチ長計測が可能であるこ とがわかった。今後は、ハードウエアの設計を進め るつもりである。

参考文献

- [1] L.A. Weinstein, *Theory of Diffraction and the Factorization Method* (The Golem Press, Colorado, 1969), p.267.
- [2] H.A. Bethe, Phys. Rev. 66, 163 (1944).
- [3] L. Palumbo, CERN LEP-TH/84-4.
- [4] S. Kheifets, et al., CERN LEP-TH/85-23.
- [5] B.W. Zotter and S.A. Kheifets, *Impedance and Wakes in High-Energy Particle Accelerators* (World Scientific, Singapore, 1998), p.267.