

Electron / Positron Injector Linac

K. Furukawa for Linac division

Linac Upgrade Status towards SuperKEKB

Kazuro Furukawa, KEK, Jun.2012.

Super KEKB

Linac in SuperKEKB Project

40-times higher Luminosity

- **Twice larger storage beam** \rightarrow Higher Linac beam current
- ***20-times higher collision rate with nano-beam scheme**
 - $rac{rac}{
 ightarrow}$ Low-emittance Linac injection beam
 - $rac{rac}{
 ightarrow}$ Shorter storage lifetime

 \rightarrow Higher Linac beam current

SuperKEKB Injector Linac

Higher Injection Beam Current

- To Meet the larger stored beam current and shorter beam lifetime in the ring
- 4~8-times larger bunch current for electron and positron
- Reconstruction of positron generator, etc

Lower-emittance Injection Beam

- To meet nano-beam scheme in the ring
- Positron with a damping ring
- Electron with a photo-cathode RF gun
- Emittance preservation by alignment and beam instrumentation
- Quasi-simultaneous injections into 4 storage rings
 - SuperKEKB e⁻/e⁺ rings, and light sources of PF and PF-AR

Improvements to beam instrumentation, low-level RF, controls, timing, etc

Linac and Positron Capture Section

SuperKEKB injector Linac

Design of Positron Capture Section

Flux Concentrator BINP-type

- In collaboration with BINP, prototype field measurement & high-power operation test performed at KEK from Nov. 2010 to March 2011.
- Breakdown issue with vacuum burst above 7 Tesla was identified. However, the investigation with BINP experts was interrupted by the Earthquake.

Flux Concentrator SLAC-type

- with helps from SLAC and IHEP we are going to fabricate SLACtype FC for linac commissioning from 2013 autumn and stable operation at T=0.
- Final optimization of field design and mechanical design as well as fabrication system design

SLAC-type FC at IHEP

Capture by L-band and LAS structures

L-band

- Large aperture (d=39~35mm) of accel. structure is desirable for transverse acceptance of Positron Capture Section
- Coprime (5:11) frequency relation is effective to sweep out satellite bunches critical to DR radiation shield issue. Full S-band (LAS) capture section gives comparable e+ yield, but with plenty of satellite particles

LAS (Large Aperture S-band)

- Medium large aperture (d=32~30mm) is desirable for transverse acceptance of PCS and quad focusing system
- Existing S-band rf source, SLED, DC solenoids are available & compact Q at FODO (reduction in initial cost)

L-band Klystron

- 40 MW L-band(1298 MHz) klystron PV-1040 designed by KEK and Mitsubishi Electric
- compatible with existing S-band modulator and KLY tank in KEKB linac
- first PV-1040 delivered in March 2010
- performance test since June 2011
- KLY operation spec. at SKB linac 30 MW x 1.5 us x 50 pps achieved !
- another two PV-1040 will be delivered, we will have three L-band klystrons for
 - (1) positron capture section
 - (2) bunch compressor at DR
 - (3) spare

(KLY data by S. Matsumoto)

L-band Accelerating Structure

first L-band structure completed in March 2010
 operation test at test stand from April 2012

- RF frequency 1298 (=2856 x5/11) MHz
- traveling-wave structure (short rf pulse)
- constant gradient
- (2/3)pi phase advance per cell
- structure length 2.2 meter
- disk aperture 2a = 39.4 ~ 35.0 mm
- field strength 12 MV/m@15 MW input
- single feed coupler (with field symmetrized)
- attenuation constant tau = 0.26

Built-in Collinear RF Power Load

- L-band rf coupler limits DC solenoid inner radius >= 180 mm
- for regular cell region, the radius can be 130 mm
- with built-in collinear power load, the output coupler can be omitted and end-tail becomes thin

Large Aperture S-band Structure

LAS structures are used,

- in second unit of capture section
- In two accelerator modules just behind capture section

Large aperture and compact outer diameter

- existing rf source available
- existing DC solenoid available
- compact quad outside LAS structure compared with L-band

Cost-performance balance

- traveling-wave structure
- constant gradient
- (2/3)pi phase advance per cell
- structure length 2.2 meter
- disk aperture 2a = 31.9 ~ 30.0 mm
- field strength 16.4 MV/m with SLED 6.9 MV/m w/o SLED
- two port input coupler (J-shape side-couple) two port output coupler (ordinary shape)
- attenuation constant tau = 0.112

Solenoid Field Design

FC + DC solenoid field distribution determines transverse acceptance of capture section and e+ initial emittance.

Particle Simulation

- capture section : Zang Lei (GPT), T.Kamitani(EGS4, CST)
- Iinac 1~2 sector + LTR : T.Miura, N.Iida (SAD)
- DR beam dynamics : H.Ikeda
- RTL + linac 3~5 sector + BT-line : N.lida (SAD)

ECS at LTR & BCS at RTL

Injector Positron Source Status

- Fabricating SLAC-type FC for T=0
- Need consideration on target protection
- Ist L-band structure to be high-power tested soon
- Design of L-band collinear load fixed
- Waveguides & loads in fabrication
- L-band klystron 1st tube ready
- Large Aperture S-band structures in fabrication
- DC solenoid field dips are moderated by huge solenoids
- Beam optical design almost OK
- Particle tracking simulation is ongoing for e+ yield and hardware parameter optimization
- Damping Ring, ECS, BCS are in construction

RF Gun at 32 unit for 5nC / 20mm-mrad

Emittance of 300 μm in KEKB should be reduced to 20 μm

Laser Development

Oscillator Nd:YAG medium, LD excitation Change frequency from 114MHz to 52MHz Synchronized through 10.39MHz Clock Successful stable excitation Amplifier improvements ~1.5mJ / 30ps / pulse at 266nm

Super KEKB

Laser Amplifier Development

Kazuro Furukawa, KEK, Jun.2012.

Laser Amplifier Development

Photo Cathode Development \bullet Started with LaB₆ Successful up to ~0.3nC before April \bullet Replaced with Ir₅Ce For better quantum efficiency Achieved up to ~1nC / bunch in April Surface cleaning cut & try With high power laser with/without RF LaB6 and Ir5Ce are rather stable Other possibilities in the future CsTe, etc

Slant Laser Injection

- Perpendicular laser injection
 & Before May.2012
- Slant laser injection through CaF2 windows
 - Non-zero perpendicular electric field (?)
 - Increased up to ~3nC / bunch
 - Emittance should be confirmed

Stable Operation of RF Gun

DAW (Disk and washer) type photo cathode RF

gun

- Strong RF beam focusing
- With stable cathode
- Should experience continuous PF injection in autumn 2012
- With backup laser

Electric field and beam tracing simulation

Fast Recovery at Failure of Positron Generator

Positron capture section replacement

- How components should be designed/installed in order to be replaced under high radiation condition?
 - (replaced twice in KEKB)
- Positron target, Flux concentrator, Bridge coil, Acceleration structure, Solenoid, Girders, Vacuum components, etc.
- Large unit should be replaced with special links
- Under discussion

Reliability with Failed Acceleration Unit

Linac Beam Energy Management

- At least one backup acceleration unit should available with two units for an energy knob in regions of;
 - Before 180deg arc
 before damping ring
 after damping ring

In each of electron and positron modes (and PF/PF-AR)

The plan was fixed

While troubles at several important units (like capture section) can prevent operation, others should be backuped

3

Beam Position Monitor Development

Requirement

50Hz with event synch., 2bunchs 96ns apart, 10micron resolution, 0.1~10nC variation at 50Hz

Present system

Solution States Stat

50~100micron resolution

BPM is essential for

 Low-emittance transport with wakefield compensation
 Beam stability monitor

BPM Development

- Modifications to commercial module Libera
 - Event-based control capability and embedded EPICS
 - Fast attenuator for variable beam modes
 - Modifications to filters and ADCs for 2-bunches 96ns apart
- New development at local company
 - In VME form factor, with external CPU and event-based controls

Additional on-line pulse test capability

- Both evaluations in this year
 - Lab tests during summer
 - Beam tests in autumn
 - Resolution, price, reliability, flexibility, manageability, etc
 - Installation in 2014

band-pass + saw filters

4 Ring Injection Timings

SuperKEKB will have integer RF clock relation with Linac

Needs ring circumference compensation with frequency modulation

PF / PF-AR will not have common clock with Linac

- As they need independent circumference compensation
- Linac injects beams at accidental synchronization
- No synchronization opportunity if integer relation
- Damping ring and L-band introduction
 - Requires further condition restrictions

Super KEKB

PF Synchronization PF Frequency modulation in a year Approx. 2 x 10^-5

Four Ring Injection and PF Sync.

Injection Synchronization with 114MHz

Four Ring Injection and PF Sync.

Injection Synchronization with 10.39MHz

Investigation

- This issue is different than the bucket selection challenges at SuperKEKB
 - Bucket selections both at DR and MR
- Was not well investigated under 10.39MHz
 - May require pulse-to-pulse LLRF manipulation between RF systems of PF / PF-AR / SuperKEKB
 - Should be investigated further

Event System Development Collaboration with SINAP

- For PLC (F3RP61 Linux CPU) as well as VME
- Under testing
- Many more synchronous controls at a reduced cost

Facility for Electric Power and Cooling Water

- Linac needs electricity and cooling water extensions, especially for positron generator upgrade
- First estimation was performed, and was found that it may impact the construction
- Under discussion how to extend the facility

Schedule

- Summer 2012 : Alignment, SY3, 3T-gun, 32-gun
- Autumn 2012 : 32-RF-gun, A1-gun(0.2nC)
- **Winter 2013 : SY2 / DR**
- Spring 2013 : A1-gun
- Summer 2013 : Installation of many components
- Autumn 2013 : e– then e+ commissioning
 - Half Linac: PF injection, Day: construction, Night: commissioning
- Spring 2014 : Pulsed Quad, Steering, Alignment
- Summer 2014 : Installation of remainings
- Autumn 2014 : Possible ring injection (?)
- Winter 2015 : DR then MR injection commissioning

