

Progress of Injector Linac

Kazuro Furukawa for Injector Linac

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015. 1

Alignment

- ◆陽電子発生装置
- ♦RF 電子銃

Commissioning

◆Phase-1 定常運転

Mission of electron/positron Injector in SuperKEKB

40-times higher Luminosity

- Twice larger storage beam
- 20-times higher collision rate with nano-beam scheme
 - \square \rightarrow Low-emittance even at first turn
 - $rac{rac}{
 ightarrow}$ Shorter storage lifetime
- Linac challenges
 - Low emittance e
 - **with high-charge RF-gun**
 - Low emittance e+
 - **x** with damping ring
 - Higher e+ beam current
 - **x** with new capture section
 - Emittance preservation
 - **x** with precise beam control

*4+1 ring simultaneous injection

 \rightarrow Higher beam current at Linac

- \rightarrow Low-emittance beam from Linac
- \rightarrow Higher Linac beam current

電子ビームパラメタ

	SuperKEKB	KEKB
エネルギー (GeV)	7.0	8.0
HER蓄積電流值 (A)	2.6	1.1
HERビーム寿命 (min.)	6	200
最大ビーム繰り返し (Hz)	50	50
最大バンチ数 (rf パルス当たり)	2	2
エミッタンス (mm·mrad)	50/20 (Hor./Ver.)	100
バンチ電荷量 (nC)	5	1
エネルギー広がり (%)	0.1	0.05
バンチ長 σ z (mm)	1.3	1.3
ダンピングリング	n/a	n/a
同時トップアップ入射	4 rings (SuperKEKB e-/e+, PF, PF-AR)	3 rings (KEKB e-/e+, PF)

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015.

Super KEKB west for 85M

陽電子ビームパラメタ

	SuperKEKB	KEKB
エネルギー (GeV)	4	3.5
LER蓄積電流值 (A)	3.6	1.6
LER ビーム寿命 (min.)	6	133
最大ビーム繰り返し (Hz)	50	50
最大バンチ数 (rf パルス当たり)	2	2
エミッタンス (mm·mrad)	100/20 (Hor./Ver.)	2100
バンチ電荷量 (nC)	4	1
エネルギー広がり (%)	0.1	0.125
バンチ長 σ z (mm)	0.7	2.6
ダンピングリング	0	n/a
同時トップアップ入射	4 rings (SuperKEKB e-/e+, PF, PF-AR)	3 rings (KEKB e-/e+, PF)

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015.

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015. 6

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015. 7

Operation Status

- **◆FY2014**の運転
 - **∻運転時間: 3900 hours (FY2013 -27%)**
 - **¤PF/PF-AR Injection (and Commissioning for SuperKEKB)**
 - **Apr.11 Apr.25**
 - ¤ May.7 Jul.1
 - **¤ Sep.24 Dec.26**
 - ¤5 days in Jan, Feb
 - **❖故障 (FY2013 0.43%)**
 - ×偏向電磁石コイル発熱 (May)
 - ¤マイクロ波パルス電源デスパイカー発熱 (May)
 - ×フラックスコンセントレータ電源側ケーブル発熱 (Dec)
 - ¤マイクロ波パルス電源トランス端末発熱 (Dec)

K.Furukawa, KEK, Jan.2015.

Facility for Electric Power and Cooling Water

- Linac needs electricity and cooling water extensions, especially for positron generator upgrade
- Separate building construction in FY2013 not to impact PF/PF-AR
- Facility extensions performed during summer 2014

Alignment

- High-precision alignment was not necessary in PF and KEKB injections, and it was much damaged by earthquake in 2011.
- Instead of flexible-structure girder before earthquake, rigidstructure was adopted with jack-volts and fixed supports.
- Reflector pedestals are developed and mounted onto quad magnets and accelerating cavities for laser-tracker measurement.
- Iterative measurement and adjustment with 500-m straight laser and position sensors should enable 0.3-mm global alignment.
- Laser tracker should enable 0.1-mm measurement within 10-m girder unit.
- Displacement gauges, hydrostatic leveling, inclinometer are also employed.
- Remote measurement system and girder mover system will be necessary for longer term, and are under development.

Alignment progress in 2014

- For the first time at 3-5 sectors
- Horizontal axis: sensor number from sector C, 1-4, to sector 5 (~80 m/sector)
- Vertical axis: voltage (~displacement at 0.25~0.5mm/mV)
- Some girders were not yet upgraded
- Moved up to 3 mm not to break vaccuum

Higo et al.

Alignment progress in 2014

- For the first time after earthquake at downstream sectors
- Several measurements during summer
- Measurement reproducibility was confirmed up to \approx 0.2 mm
- While there existed several conflicting measurements, consistent scheme has been established
- Movement of tunnel by several 10's of micrometer was observed (→ mover)
- Further work necessary in 2015, for alignment and girder replacement

Positron Generation

4-times more positron is required at SuperKEKB than KEKB

- Safety measure was taken after cable fire during the test of Flux Concentrator (FC)
- New components in 100-m capture section were tested in steps
- High voltage tests in tunnel in April
- Beam tests with electron in May

Positron generation for SuperKEKB

New positron capture section after target with

Flux concentrator (FC) and large-aperture S-band structure (LAS) Satellite bunch (beam loss) elimination with velocity bunching Pinhole (2mm) for electrons beside target (3.5mm) Beam spoiler for target protection

Positron Enhancement

陽電子捕獲部@Linacトンネル

K.Furukawa, KEK, Jan.2015.

Large aperture S-band structure

before solenoid & guad installation

Positron from New Positron Capture Section

- Generated positron ~0.1nC was transferred to the entrance of damping ring
- With higher magnetic and electric field, 4-nC positron will be generated
- Target shield (40cm x 6m long) will be finalized
- Alignment will be improved 3mm → 0.1mm

T.Kamitani

(1) FC current

K.Furukawa, KEK, Jan.2015.

Positron Generation

1) Installation of positron generator for SuperKEKB in April 2014

(Beamline construction since summer 2013) (positron target, spoiler, Flux Concentrator, bridge coils, LAS structures [x6], DC solenoids [16+13], e+/e- separator, quads [≥90])

2) Commissioning of positron beam, observation of the first positron after reconstruction for SuperKEKB, further improvements expected

	Primary e- [nC]	Positron [nC]	Efficiency	Parameters
June 2014	0.6	0.12	20%	FC 6.4kA, Solenoids 370A, LAS capture field 10 MV/m
Specification (at SY2)	10.0	5.0	x2.5 50%	FC 12kA, Solenoids 650A, LAS capture field 14 MV/m
DR injection (2017?)		4.0	40%	Energy spread acceptance 0.5%

 Oct.~Dec.2014 : Linac commissioning Jan.~Mar.2015 : Construction Jul.~Sep.2015 : Construction

Apr.~Jun. : Linac commissioning Oct (?) : LER injection

鳥瞰図:南東方向から見た図. トンネル1-5 陽電子
ターゲットの60cm上流から6mの範囲に設置. 今年度は、
遮蔽鉄の厚みは200mm(図中の赤+灰色部).
200mm角柱 6本が現場通路上ビームラインよりに設置される. 鉛カーテンを設置すると、通路の幅が現場では
1400mm. 3月末までに建設.

Photo cathode RF gun development

Quasi traveling wave side couple cavity

5.6 nC / bunch was confirmed

 Next step: 50-Hz beam generation & Radiation control

RF-Gun development strategy for SuperKEKB Cavity : Strong electric field focusing structure Disk And Washer (DAW) => 3-2, A-1(test) **=⊳ A-1 *Quasi Traveling Wave Side Couple** ⇒ Reduce beam divergence and projected emittance dilution Cathode : Long term stable cathode ♦ Middle QE (QE=10⁻⁴~10⁻³ @266nm) \diamond Solid material (no thin film) \equiv Metal composite cathode \Rightarrow Started from LaB₆ (short life time) ⇒ Ir₅Ce has very long life time and QE>10⁻⁴ @266nm Laser : Stable laser with temporal manipulation ♦LD pumped laser medium => Nd / Yb doped \bullet Temporal manipulation \Rightarrow Yb doped **=>** Minimum energy spread

Design of a quasi traveling wave side couple RF gun

M. Yoshida et al

Quasi traveling wave side couple has stronger focusing field

Beam tracking simulation result

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015.

RF-Gun comparison

M. Yoshida

Quasi traveling wave side couple RF gun (100 MV/m, 6mm-mrad, 13.5 MeV)

DAW-type RF gun (90 MV/m, 5 mm-mrad, 3.2 MeV)

BNL-type RF gun (120 MV/m, 11.0 mm-mrad, 5.5 MeV)

Ir₅Ce Cathode Quantum efficiency improvement by Laser cleaning

QE Enhancement of IrCe cathode

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015. 26

Energy spread reduction using temporal manipulation

M. Yoshida

Energy spread of 0.1% is required for SuperKEKB synchrotron injection.

Properties of laser medium

A-1 RF gun results

32.7 ±3.1 mm-mrad

10.7 ±1.4 mm-mrad

Super KEKB

Photo cathode RF gun development

- Part of multi-pass Amplifier
- **5.6 nC / bunch was confirmed**
- Next step: 50-Hz beam generation & Radiation control

KEKB -

GU_A1 Laser Configuration as of Nov.2014

GU_A1 Laser Configuration as of Dec.2014

Alpha Phase

10330# Interior B

新マルチパスアンプ 1段目

波長変換部

HAR BURNER

12/10/04

新マルチバスアンプ 2段目

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015. 32

Photo cathode RF gun improvement

- Crucial for high-current low-emmittance beam
- New Ir5Ce cathode and new cavity QTWSC were successful
- **\bullet** Basic features were confirmed at 2 \approx 5 Hz
- Expect beam parameter and stability performance at 50 Hz, with multi-pass amplifiers and cooling system
- Resolved the issue of oscillator synchronization
- Staged laser system improvements with beam measurement system

Super KEKB

Super KEKB

バンチ電荷量安定性の改善

PFトップアップ入射を継続しつつ,RF電子銃スタディをおこなっている。3セクタ以降は,PFビーム用パラメタを使

Commissioning

A1 部 Dispersion (2014/11/26)の測定結果

Super KEKB

シミュレーション2

• 測定値を再現するようなBMA*の曲げ角をSADのマッチングで探す。

Commissioning

入射部のアライメント測定 (RF-Gun~A2)

QM_A1_1 QF_A1_C5 QD_A1_C5

K.Furukawa, KEK, Jan.2015.

K.Furukawa, KEK, Jan.2015.

F. Miyahara

・初期位相が10°変わると横方向の位相空間分布が変わる=レーザーのタイミングに敏感(電子銃内部での収束 力は位置、時刻によって変動するので分布が変化すれば出口での 位相空間分布も変化してしまう)

Super KEKB west for 85M

ターゲット周辺の軌道

不自然な水平軌道(要アライメント確認)

K.Furukawa, KEK, Jan.2015. 43

Commissioning

RO ARC Dispersion測定: Trackingとの比較

電子ビームコミッショニング

項目	設計値	現状
バンチ電荷量 (nC)	5	5.01 (電子銃直後) 0.58 (入射器終端)
ビームエネルギー	7	7.5
入射器終端でのエミッタンス (mm·mrad)	50/20 (Hor./Ver.)	20/7 (Hor./Ver.) (@A1 unit)
電荷量安定性 (%)	2.5 (KEKB)	10 ~ 20
バンチ圧縮 (A1 ユニット) (ps)	30 -> 10	10 ~ 15
バンチ圧縮 (J-ARC) (ps)	10 -> 5	n/a
ビーム分布 (縦方向)	一様分布	n/a
エミッタンス保存	" J-ARC バンチ圧縮" + "オフセットインジェクション"	n/a
最大ビーム繰り返し (Hz)	50	25
最大バンチ数 (rfパルス当たり)	2	2
ビーム入射	Simultaneous top-up	n/a

◆コミッショニングツール群の整備

◆ワイヤスキャナ

◆トリガ同期カメラおよびスクリーンモニタによるQス キャン測定

☆マッチングソフトウェア

◆入射部のアライメント

◆A1シケイン、J-ARCでのビームロス低減(アライメン ト再確認)

◆現状で定常運転向けの Beam が完成しているわけではない

◆開発は継続する必要があるが、運転向けの体制を 考える

◆Phase-1 では Beam requirement は厳しくない

- ◆放射線施設検査を 5-6 月に控えている
- ◆RF 電子銃と熱電子銃の併用を進める

Staged Radiation Control License towards SuperKEKB

- **+**Two licenses were approved in June 2014

- Radiation measurements especially at positron generator
 - Indispensable to estimate radiation at ≥100 times higher beam
- Both approved
- ♦ Soon apply for the next license at ~May.2015

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015.

M. Yoshida

M. Yo<mark>shida</mark>

熱電子銃とRF Gun 同時設置 2

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015.

Linac Upgrade Status towards SuperKEKB

K.Furukawa, KEK, Jan.2015.

Summary

- Steady progress towards first MR injection in 2015
- Finishing earthquake disaster recovery in 2014
- Will make staged improvements before 2017
- Will balance between final beam quality and staged operation
- Will select optimized route depending on available resources
 - Incorporate thermionic gun as well as RF gun

Super KEKB

Emittance Preservation and Alignment

If Device is off center of the beam

- Focusing magnet (quad) kicks the beam bunch
- Accelerating structure (cavity) excites wakefield, to bend the tail

Distorted bunch in banana shape

- Emittance dilution or blow-up, even 100 times larger
 - Depending on the beam optics and the beam charge

Alignment and orbit correction is crucial to preserve the emittance Sugimoto et al.

Transverse beam distribution in time direction

Emittance Preservation

Offset injection may solve the issue

Orbit have to be maintained precisely

Mis-alignment should be <0.1mm locally, <0.3mm globally</p>

K.Furukawa, KEK, Jan.2015. 61

