Overview of SINAP Timing System

Electronics Group
Beam Diagnostics & Control Division
SINAP
Outline

• v1 timing system structure
• v1 hardware
• v1 performance
• v1 in PLS-II
• v2 timing system structure
• v2 hardware
SINAP v1 timing system structure
Hardware List

- SINAP v1 timing system:
 - EVG
 - EVR
 - FANOUT
 - TTL VME Transition Board
 - Plastic fiber VME Transition Board
 - Multimode fiber O/E
 - Plastic fiber O/E
EVG

VME 6U module; A16D32 addressing

Input: 1ch RF clock (0 – 10 dBm)
 1ch AC line (3Vp-p typical)

Output: 1ch multi-mode fiber
 1ch Sequence RAM trigger
 (TTL)
EVR

VME 6U module; A16D32 addressing
Input: 1ch multi-mode fiber
1ch interlock input (TTL)
Output: 3ch TTL trigger/clock
3ch LVPECL trigger/clock
1ch CML RF recovery clock
2ch Multi-mode fiber trigger
FANOUT

VME 6U module
Input: 1ch multimode fiber
Output: 12ch multimode fiber
TTL VME Transition Board

VME transition board
Output: 14ch TTL trigger
Plastic Fiber VME Transition Board

VME transition board;
Output: 14ch optic trigger
(Agilent HFBR-1528)
Multi-mode Fiber O/E

Standalone module

Input: 1ch multi-mode fiber

1ch power supply (24V/1A)

Output: 1ch TTL (50ohm)
Plastic Fiber O/E

Standalone module
Input: 1ch multi-mode fiber
1ch power supply (24V/1A)
Output: 1ch TTL
Performance Testing

• Stability
coding-decoding error
Performance Testing

- Jitter

EVR TTL output

< 6ps
Performance Testing

- Jitter

Multi-mode O/E output < 10ps
MRF Jitter Performance

- EVR TTL output > 18ps
Performance Testing

- Phase Shift

Phase shift with temperature changing (35ps/°C)
v1 in PLS-II

in LINAC control room

in RF station (EVG)
v1 in PLS-II

in Klystron & Modulator

in E-gun
V1 in PLS-II

in Storage Ring

in Kicker station
SINAP v2 timing system structure
System Design

• **Synchronization**

Broadcasting mode

![System Design Diagram](image-url)

- **Switch**
 - Event → Encoding → 8B10B → Parallel to Serial → Transmitter
 - Master Clock → Divider → Reference Clock

- **Fiber**
 - Serial to Parallel → 8B10B → Decoding
 - Clock Extraction
 - Recovery Clock → Divider
 - Trigger → Clock

Electronics Group, Beam Instrumentation & Control Division
System Design

- Deterministic Data Transfer

Switching mode
System Design

- Frame Format

1 byte for trigger code
1 byte for data frame

<table>
<thead>
<tr>
<th>1 byte</th>
<th>1 byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>trigger</td>
<td>data frame</td>
</tr>
<tr>
<td>K28.5</td>
<td>data frame</td>
</tr>
<tr>
<td>K28.5</td>
<td>data frame</td>
</tr>
<tr>
<td>K28.5</td>
<td>data frame</td>
</tr>
<tr>
<td>trigger</td>
<td>data frame</td>
</tr>
<tr>
<td>K28.5</td>
<td>data frame</td>
</tr>
</tbody>
</table>

The minimum interval of trigger is 8ns (2.5Gbps).
System Design

- Data Frame Format

<table>
<thead>
<tr>
<th>1 byte</th>
<th>4 byte</th>
<th>8 byte</th>
</tr>
</thead>
<tbody>
<tr>
<td>K28.3</td>
<td>address</td>
<td>data</td>
</tr>
</tbody>
</table>

4 bytes for address; 8 bytes for data; 1 byte for K28.3
The maximum data transfer rate is 76.9MB/s (2.5Gbps)
Hardware list

• SINAP v2 timing system:
 VME-EVO
 VME-EVE
 PLC-EVR
 STD-OE
VME-EVO

Configured to EVG, EVR and FANOUT by software
VME 6U module, A16D32 addressing
Input: 1 RF clock (0 – 10dBm)
 1 interlock / AC-line (TTL)
 1 fiber (SFP module)
Output: 8 fiber (SFP module)
VME-EVO

- Configure to EVG
VME-EVO

- Configure to FANOUT
VME-EVO

- Configure to EVR
VME-EVE

Configured to EVR
VME 6U module, A16D32 addressing
Input: 1 interlock (TTL)
 1 fiber (SFP module)
Output: 8 outputs (TTL)
 1 RF recovery clock
VME-EVE

uplink

SFP → GTX

EVR logic

data logic

GTX8 → GTX0 → GTX1 → GTX7

RF transformer
fine delay
fine delay
fine delay

RF → TTL → TTL → TTL

Recovery clock
VME-EVE

- RF recovery clock

0x003ff → event clock
0x03c1f → 2x event clock
0x18c63 → 4x event clock
...
VME-EVE

- RF delay

$$(0,0,0xFFFF,0xFFFF) \rightarrow (0,0x1,0xFFFFe,0xFFFFf)$$

1/20 event clock delay
(Synchronized with RF clock)
PLC-EVR

Yokogawa FAM3 series, 1-slot module
Input/Output register mode
external 5V/3A DC power supply is required
Input: 1 fiber (SFP module)
Output: 4 outputs (TTL)
STD-OE

19 inches 1U standard chassis
110/220V 50-60Hz AC power supply
Input: 4 fiber (SFP module)
Output: 4 outputs (TTL)