

Towards a new Timing System for Particle Accelerators

Overview of the work of the project interest group

Patrick Loschmidt Austrian Academy of Sciences

Research Unit for Integrated Sensor Systems

Intention

- Introduce you to the GMT renovation project started with the AB-CO-HT section at CERN
- Add value to the project by making it more known and interesting for others to join
- Learn about other accelerator operators' requirements
- Trigger a discussion
 - get feedback about our ideas
 - probably find a new "user" or even codeveloper
 - identify commonalities for possible cooperations

Motivation

- Initiative came from CERN, AB-CO-HT section (accelerator beam, control, hardware timing)
- After (almost) completion of the new LHC, CERN's control group is launching a renovation project for its injector complex.
- Review the way accelerator timing is done, since the current version has some drawbacks
- A new system will be chosen for the next 10-20 year period

Currently Installed GMT

- Based on fibre transmission for long stretches
- followed by RS-422 multi-drop over shielded twisted pair, with a bandwidth of 500 kb/s
- Time is broken up in milliseconds
- 8 events max. per slot
- The master is driven by a Pulse Per Second (PPS) pulse and a 10 MHz from a GPS Disciplined Oscillator providing UTC synchronisation.
- One master card per accelerator due to bandwidth constraints
- Communication is exclusively downstream.

Kick-off Workshop February, 25th

- One day meeting held at CERN Meyrin
- Introduction of all participants, their competencies and interest in the planned co-operation
- Main subjects
 - timing systems for large Physics facilities
 - special emphasis on non-beamsynchronous timing systems
 - Ethernet technologies
 - PTP (IEEE 1588)
- Long discussion in the afternoon to launch collaborative effort

Project consortium

- Participants (25 people)
 - "Users"
 - CERN (Geneva, Switzerland)
 - GSI (Darmstadt, Germany)
 - IN2P3 (Lyon, France)
 - ITER (Cadarache, France)
 - Elettra (Trieste, Italy)
 - planned contact to Fermilab concerning Project X
 - Academic
 - InES (Winterthur, Switzerland)
 - AAS, FISS (Vienna, Austria)
 - Companies
 - Cosylab (Ljubljana, Slovenia)
 - Oregano Systems (Vienna, Austria)
 - Micro Research (Helsinki, Finland)

Main Issues with the Current GMT at CERN

- Lack of bi-directionality in GMT:
 - Requires parallel data path (technical network) for control and diagnostics
 - → only platforms with an embedded computing engine are supported
 - Cabling delay compensation cannot be done automatically
 → need for costly/unreliable measurement campaigns
- Lack of bandwidth in GMT
 - 500 kb/s current rate was chosen for backwards compatibility
 - different networks for different accelerators

Project Steps and Issues

- Identify commonalities with other projects
- Analyse promising enabling technologies
 - Ethernet and PTP (IEEE 1588)
 - Bidirectional optical links, with active or passive fan-outs
- Boundary conditions
 - Be as standard as reasonably possible.
 - End up with a completely open source product.
- Raised issues
 - Time scheduled vs. event based systems.
 - Unclear advantages of plain Ethernet + protocol stack.
 - How to mix companies and open source?

System Concept

- More than a timing system
 - full-blown deterministic field-bus
 - bidirectional nature
- Several approaches, what to put on top of synchronous Ethernet
 - similar to WorldFIP or Powerlink
- Downstream communication would be the monopoly of the master
 - continuous stream so there is no drift problem in the receiver's PLL (a must for ps timing).
- Upstream traffic would be timemultiplexed

Workshop outcome

- Technical issues
 - Synchronous Ethernet plus PTP (IEEE 1588) (pro & con)
 - Form factors
 - Interest in higher level protocols
- Project Management Issues
 - CERN driving project, remaining organisational structure
 - Open source definition
 - Timescale of work
 - Quantities of components / machine requirements
 - Financing
- Documentation
 - http://indico.cern.ch/conferenceDisplay.py?confld=28233

Selected Work Packages

- Manage Project (CERN)
- Gather user requirements (Cosylab)
 - GSI, CERN and IN2P3
 - Starting at the physical layer and moving up until the event distribution processor.
 - Find commonalities and identify potential incompatibilities
 - Study Synchronous Ethernet and IEEE 1588
 - almost finished
- Fibre vs. copper (FiSS)
 - Study the trade-offs between copper and fibre solutions regarding delay symmetry, EMC robustness, price, performance, dependencies towards ASIC vendors
 - Analyse a solution involving a standard bidirectional fibre transceiver + an FPGA, no dedicated Ethernet chips

Selected Work Packages

- Reliability studies (CERN)
- Standards compliance (InES)
 - Compliance of IEEE 1588 with synchronous Ethernet
 - Propose a delay compensation part
 - Study the interplay between our home-made solution and commercial hardware not using either synchronous Ethernet or IEEE 1588 or none.
 - Standardisation activities
- Scalability system-level simulation (FiSS)
 - System level stability issues
- Scalability studies (Oregano Systems)
 - Potential instabilities caused by cascading PLLs
 - Study impact of the IEEE 1588 loop on these instabilities
- Overall Design Specification (CERN)

Currently Running Efforts

CERN and Elettra

- Transmit a 240 MHz clock encoded in a 2.4 Gbps data stream over std. multimode fibre using commercial SFP modules on Xilinx Virtex-5 evaluation boards
 - Extract the clock on the receiver side and evaluate its stability
 - Further manipulate this clock by means of DLL inside the FPGA
 - Already running demo using coax cabling

FiSS

- Evaluation system based on Altera Stratix II GX dev. board
- compare copper with optical link with respect to IEEE 1588
- checking climate influence on link
- Project wide
 - dig out funding possibilities (national or EU)

IEEE 1588 Standard

- IEEE Standard (2002, 2008)
 - Origin in instrumentation and measurement
- Master-Slave based
 - "best master" election
 - Stratum based (clock quality)
- Defines protocol for time information exchange
 - PTP (Precision Time Protocol)
 - Network-independent
 - Mostly Ethernet-based
 - "Delay Request" and "Delay Response" packets
- No actual synchronization

$$\Delta_{1} = T_{1}^{S} - T_{2}^{S} = T_{1}^{S} - (T_{2}^{M} + \delta)$$

$$\Delta_{2} = T_{3}^{S} - T_{4}^{S} = -T_{4}^{S} + (T_{3}^{M} + \delta)$$

$$\Delta = \frac{\Delta_{1} + \Delta_{2}}{2}$$

Basic Clock Synchronization Core

- High resolution adder based clock
 - Smooth, continuous amortisation
 - Different oscillator speeds
- Single and periodic timers
 - Distributed PLL
 - Event distribution
- Programmable MII scanner
- State, rate and interval based synchronization support
 - Temporary increment
 - Compensated timer

IEEE 1588 Clock Synchronization

- Software stack running protocol
- Kernel driver accessing HW functions
- HW supported timestamping of Ethernet packets
 - memory buffers and pre-scheduled parameter modifications

Achieved Goals

- IP Cores (FPGA, ASIC)
- PCI Ethernet NIC
- 8-port Ethernet Switch
- IEEE 1588 PTP Stack + Drivers
 - Version 2002 & 2008
 - Linux & Windows

WP3 Evaluation Platform

- Altera evaluation platform for gigabit communication
 - High performance FPGA
 - Optical transceiver
 - Gigabit PHY
- GE delay behaviour for copper and optical
- Basis for development of new timing system
 - climate chamber
 - fibre spools (1 km, …)
- Investigation of remaining jitter sources and control loop optimisations

ご静聴ありがとうございました。

Embedded Processor HyNet32 XS/S

- Hyperstone RISC / DSP core
- UMC 0.18µm technology
- Clock synchronization core
 - 3rd generation
 - 60500 gates
 - 100 MHz
 - two Ethernet interfaces
- μClinux 2.4/2.6
- 400ns accuracy in rev. 0 on 10 Base-T
- expected 7ns in rev. 2 using standard 100 Base-T
- Current lab equipment
 - 700ps std. deviation for pulse generation

