
07.3.7 J-PARC 1

Enhancements to the XAL Online Model for J-PARC
Topics in Software Engineering and RMS Envelope

Simulation

Christopher K. Allen
Los Alamos National Laboratory

Los Alamos, New Mexico

07.3.7 J-PARC 2

Abstract

The XAL accelerator application framework was originally designed
with specific architectural goals which are important to recognize in
order that future upgrades are consistent with these goals.
Consequently software engineering is a very important aspect of
XAL development. I will discuss various topics of software
engineering in general, and with specific regard to the XAL
framework. Also, I will briefly outline the specific enhancements
to the XAL online model made during my sabbatical time at J-
PARC. Some of this work included adding additional simulation
capabilities to the online model, correcting existing ones, and
verification. However, much effort was also devoted toward
refactoring existing code into a more robust and upgradeable
software system consistent with the XAL architecture.

07.3.7 J-PARC 3

Outline

1. Motivation

2. Managing Software Development

3. Engineering “Rules of Thumb”

4. Accelerators and Software
Engineering

5. Summary

07.3.7 J-PARC 4

Software Engineering
Definition

According to the IEEE

“The application of a systematic, disciplined, quantifiable
approach to the development, operation, and maintenance of
software: that is, the application of engineering to software.”

07.3.7 J-PARC 5

Software Engineering
1. Motivation

 Complex systems are best implemented with engineering
 Would you build a house without blueprints?

 Would you build your house without blueprints?

 Since software is intangible (practically invisible) it is more
susceptible to neglect in this area
 This is a dangerous trap

 Many shortcomings are easily obfuscated

 These shortcomings almost always become crises later on

Software Engineering
1. Motivation

07.3.7 J-PARC 7

Software Engineering
1. Motivation

The moral of the story is that your going to put your time in

1. Do you want to spend time at the beginning of the project
designing, documenting, and quantifying?
(not so sexy)

2. Or do you want to spend your time at the end putting out
fires?

(even less sexy)

07.3.7 J-PARC 8

Software Engineering
2. Managing Software Development

This is understandable, it is relatively new
 Few metrics to gauge progress

 Design phase
 No code is being written
 Typically very long

 Innovation is hard to manage
 Many unknowns

 “I don’t care what it looks like on the inside”
 As long as it works “who cares”

Software engineering can make management
nervous

07.3.7 J-PARC 9

Software Engineering
2. Managing Software Development

Let us address each of these issues

 Progress Metrics
 Design phase
 Innovation
 “Who cares”

=>Managing Risk

07.3.7 J-PARC 10

2. Managing Software Development
i. Metrics

Old software progress metrics are almost meaningless

Imagine building a house without a design
 “I’ve used 1,000 board-ft of lumber – I’m half finished!

Imagine building a large software system without a design
 “I’ve written 100,000 lines of code – I’m half finished!”

 Ironically, old progress metric was
lines of code written.

 A more meaningful progress metric
is tasks completed

 Must identify tasks (engineering)

07.3.7 J-PARC 11

2. Managing Software Development
ii. Design

Eight Phases of Development (WWISA)
1. Pre-design – scope, requirements, expectation

2. Domain analysis – document system behavior

3. Schematic design – architectural level design

4. Design development – detailed design

5. Project documents – construction process detail

6. Staffing or contracting – personnel, costing, etc.

7. Construction – software implementation

8. Post-construction – deployment, maintenance, etc.

07.3.7 J-PARC 12

Note that most effort is devoted toward design, documentation, costing,
etc.

 Only about 15-30% of the effort is implementation.

 However, it is easy and fast to
implement large blocks of code if
blueprints already exist.
 (The thinking part is hard)

2. Managing Software Development
ii. Design

07.3.7 J-PARC 13

My contention that design has always occupied
most of the effort
 Previously the design and implementation phase

were not separate

 Coding and designing at the same time
 Leads to a “wandering” style of development

 No meaningful metrics for progress, operation, etc.

 Does not support team development

2. Managing Software Development
ii. Design

07.3.7 J-PARC 14

2. Managing Software Development
iii. Innovation
As developers, our jobs are complicated by the ethereal

nature of software
 Counter-example: mechanical engineers can see

 A bad design
 A flawed prototype
 An implementation “bug”

 Electrical engineers were faced with a
similar problem

 Developed circuit diagrams
 Circuit simulators

 Software engineers now have similar
tools

07.3.7 J-PARC 15

Software Engineering Tools
 UML is a formalized language for

blueprinting software.
 Analogous to circuit diagrams or

mechanical drawings
 There are many commercial UML

tools
 Rational Rose

 Design Patterns
 Common architectural solutions to

common engineering tasks
 Analogous to amplifiers, DSPs,

A/D converters, etc.

Such tools help us develop an a priori
appreciation for the difficulty of a
software task

2. Managing Software Development
iii. Innovation

A
bstract F

actory

07.3.7 J-PARC 16

2. Managing Software Development
IV. “Who cares… as long as it works”

Would you buy the car without having a look
under the hood?

Proverbial “barbeque under the hood”

It works fine now, but wait
until you drive it off the lot…

07.3.7 J-PARC 17

Brittle Code
 It works now and it is quick to write
 But it breaks often, and a significant

part of development is spent fixing it.
 It is hard to understand
 It is hard to maintain
 It is hard to upgrade

 It typically requires much more time
and effort in the long term

2. Managing Software Development
IV. “Who cares what’s under the hood”

07.3.7 J-PARC 18

Software Engineering
3. Rules of Thumb

 What is good software engineering?

Good software engineering and pornography
“I can’t define it but I know it when I see it.”

07.3.7 J-PARC 19

Software Engineering
3. Rules of Thumb

Design your software as robust as possible

 Your entire software life-cycle is affected
by what you do at the design stage

 You cannot anticipate everything, but
neglect here will certainly cost you
throughout the software lifetime

07.3.7 J-PARC 20

Software Engineering
3. Rules of Thumb

Is your software upgradeable?

 There will always be
upgrades!

 Your foundation must be
solid and able to
accommodate the future

07.3.7 J-PARC 21

Software Engineering
3. Rules of Thumb

Recognize the “Death March”

There are ways to survive a death march

 see E. Yourdon “Death March”

 Planning is essential here

 Natural tendency is to jump
immediately into implementation
 Worst strategy

07.3.7 J-PARC 22

Software Engineering
3. Rules of Thumb

Spend the time to write clear, concise, documented code

 If it is only you on a project, and will only be you, forever, then do
whatever you want, because the rest of us won’t look at it.

 However, if the project involves other people, requires production
quality, and expects future modifications and growth, by all means
please heed the principles of software engineering.

07.3.7 J-PARC 23

 For example, do you want to deal with this?

A 2004 Winner of the International Obfuscated C Code Contest (IOCCC)
(Polynomial Graphing Program)

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define _ ;double
#define void x,x
#define case(break,default) break[O]:default[O]:
#define switch(bool) ;for(;x<bool;
#define do(if,else) inIine(else)>int##if?
#define true (--void++)
#define false (++void--)

char*O=" <60>!?\\\n"_ doubIe[010]_ int0,int1 _ Iong=0 _ inIine(int eIse){int
O1O=!O _ l=!O;for(;O1O<010;++O1O)l+=(O1O[doubIe]*pow(eIse,O1O));return l;}int
main(int booI,char*eIse[]){int I=1,x=-*O;if(eIse){for(;I<010+1;I++)I[doubIe-1]
=booI>I?atof(I[eIse]):!O switch(*O)x++)abs(inIine(x))>Iong&&(Iong=abs(inIine(x
)));int1=Iong;main(-*O>>1,0);}else{if(booI<*O>>1){int0=int1;int1=int0-2*Iong/0
[O]switch(5[O]))putchar(x-*O?(int0>=inIine(x)&&do(1,x)do(0,true)do(0,false)
case(2,1)do(1,true)do(0,false)6[O]case(-3,6)do(0,false)6[O]-3[O]:do(1,false)
case(5,4)x?booI?0:6[O]:7[O])+*O:8[O]),x++;main(++booI,0);}}}

Software Engineering
3. Rules of Thumb

07.3.7 J-PARC 24

Do not put code somewhere just
because it is convenient

 This is faster in the beginning
but costs a lot of time later

 E.G., Don’t run the sewer line
through the heating duct just
because the hole is already
there.

Software Engineering
3. Rules of Thumb

07.3.7 J-PARC 25

Software Engineering
3. Rules of Thumb

Avoid “Over Engineering”

 Scale your engineering efforts
to the size of the project
 A dog house

 The White House

 “Paralysis by Analysis”
 When a clear path is not

apparent, you may need
instinct “Sounds better than live?”

07.3.7 J-PARC 26

Software Engineering
3. Rules of Thumb

Knowing when to quit
 Sometimes legacy code can

no longer be salvaged

 Move away from functional
programming

 Brittle code

 Stop using FORTRAN
 Does not support

engineering

07.3.7 J-PARC 27

Some of the worst software-bugs which ever occurred:

 1985: 6 People died due to radiation overdose in the Therac-25 X-ray therapy
apparatus caused by a software bug.

 1996: An Ariane 5 spacecraft exploded 36 seconds after take-off. The problem was
software originally used in its predecessor, Ariane 4. A directional correction too
large for the new spacecraft was applied, exceeding aerodynamic tolerances.

 1999: The Mars Climate Orbiter incinerated in the Martian atmosphere because
data that was in expressed in English units was entered into software designed for
metric units.

 The original software in the F-16 fighter jet would have turned the plane upside-
down when it crossed the equator. Fortunately, this problem was detected early via
simulation.

Need for Software Engineering
4. Software Engineering and Accelerators

07.3.7 J-PARC 28

4. Software Engineering and Accelerators

 Accelerators are (arguably?) complex systems
 More complicated than cars…

 More complicated than houses…

 Then why would not an
accelerator control and/or
simulation code not also be
complex?
 It is unreasonable to think that

the construction of such
systems would not require a
significant engineering effort

07.3.7 J-PARC 29

Software Engineering and Accelerators
There is a Need

The newest machines are the most sophisticated ever built
 Highest power
 Tightest tolerances
 Largest scales
 Multiple applications

 We need sophisticated software that can analyze and control these machines
 Software simulations

 Not just a bunch of calculations
 Put together the model in a logical manner

 Feedback control
 Modern control

 Bottom Line – Need to implement control and simulation software that is
 Reliability!
 Maintainability!
 Upgradeability!

07.3.7J-PARC30

XAL A Framework for Portable High-Level
Control of Charged Particle Accelerators

Conceptual (Pre-Design)

Example: Accelerators and Software Engineering

07.3.7J-PARC31

XAL Architecture
Subsystem Diagrams

High-Level Control System for
 SNS Accelerator

«system»
gov::sns

«framework»
xal

tools::ca

«facade»
Third Party::JCA

«system»
Third Party::EPICS

«suite»
tools

«suite»
apps

«subsystem»
xal::model

«subsystem»
xal::smf

«import»«import»

«framework»
tools::agent

«framework»
tools::application

«import»

«uses»

07.3.7J-PARC32

XAL Architecture
Class Diagrams

07.3.7J-PARC33

XAL Architecture
Deployment Diagram

IOC

«executable»
apps::High-Level Application

Physics
Server

«executable»
SNS Start Map

Control
Computer

Console

Local Network

«library»
xal:: xal.jar

XML...
...........
...........
...........

Console

Console

IOCIOCIOC

07.3.7J-PARC34

XAL Architecture
Communication Diagrams

Probe:
- initial conditions
- type (single particle,

envelope, multi-
particle)

Accelerator
sequences + devices

gov.sns.xal.smf

Lattice
Generator

gov.sns.xal.slg

External
lattice

generation

Database

User tuning

Machine data

Online Model
gov.sns.xal.model

 Trajectory
- Twiss
output

Scenario
gov.sns.xal.model.scenario

07.3.7 J-PARC 35

5. Summary

Accelerators are very complex systems. The operation and
simulation of these complicated and expensive machines rely
upon software, complex software. It is only natural to allocate
a significant part of the software development effort to
guarantee that this software is reliable, maintainable, and easily
upgraded. In other words, in the long term, to provide the most
efficient, cost effective, and reliable operating environment for
our accelerator complex, we should ensure that this software is
engineered to the best available standards.

07.3.7 J-PARC 36

どうもありがとうございます

皆様
この二年間皆さんと一緒に仕事が出来てう
れしかったです。日本では貴重な体験を
たくさんさせていただきました。このよ
うなすばらしい機会を与えて下さり本当
にありがとうございました。

07.3.7 J-PARC 37

XAL Architecture
Points to Remember

 XAL Framework
 Be careful here!

 Do not make modifications just because it makes your
life more convenient

 Consequences affect everyone

 Applications
 Architecture and engineering are less important

 However, if you build a general, well-designed
application, then everyone can use it

07.3.7 J-PARC 38

XAL Architecture
Points to Remember

 The lattice file represents the hardware
 It is not a data file

 Design values only
 Not for machine parameters setting

 Online Model
 Three independent components
 Element/Algorithm/Probe Architecture

 Only the Algorithm object knows about Elements
and Probes

07.3.7 J-PARC 39

Software Engineering
Rules of Thumb

 Document your code (Javadoc!) (not sexy)
 It is certainly faster for you now to skip documentation

 But much slower for your coworkers later

 Much slower for you later when you forget what you were
doing

 It is also dangerous to skip documentation
 I usually read the instructions before firing up the

bulldozer

07.3.7 J-PARC 40

Software Engineering
Rules of Thumb

 New software technology
 Don’t use Version 1 products

 “Microsoft: Where quality is number 1.1”

 There is always a lot of new software
 Try to maintain awareness of new technologies and what

they do so that you may learn them and use them when
needed

 Before writing new software – Check the Internet
 For Java this is especially true – and easy

07.3.7 J-PARC 41

Software Engineering
3. Rules of Thumb

 Software conventions are typically good –
use them!
 Saves much time for the person behind you

 Why is there always a light switch, inside the
door, opposite side, at hand level?

07.3.7 J-PARC 42

 For proof of principle, quick prototyping, etc.,
Matlab, Mathematica, Scripting, etc., are all fine.

 However, when it comes time to build a solid
software system, a high-level language is more
appropriate
 Supports necessary engineering and architectural

constructs
 Classes, interfaces, components, etc.

 Supports maintenance and testing

 Clarity and documentation

Software Engineering
Rules of Thumb

07.3.7 J-PARC 43

 Management styles
 Maintenance

 Anticipate problems and prepare for them
 Crisis intervention

 Respond to crises as the occur and fix them

 Good software engineering favors the former
 Design!

 Reliability
 Maintainability
 Upgradeability

07.3.7 J-PARC 44

Need for Software Engineering
4. Software Engineering and Accelerators

Some situations are obvious

Many applications require robust, large, and/or complex software
systems and, consequently, must be engineered

 Medical applications
 AED (automated external defibrillator)
 X-ray equipment

 Aerospace
 Navigation
 Automation

 Accelerator control?

