
 

 

 

 

 

SAD RMS Envelope Simulation Manual 
 

Christopher K. Allen and Masanori Ikegami 
KEK, Tsukuba, Ibaraki 305-0801 Japan 

December, 2005 
 
 
 
The capability for RMS envelope simulation, including space charge, has been 
implemented in the SAD environment.  This note is a summary of this feature.  Included 
is a discussion on running the simulation, along with a description of the simulation 
parameters.  Also included are a listing of the most used functions and their arguments, a 
listing of all the new functions implemented, along with a brief description and their 
calling hierarchy, and a code excerpt demonstrating how to use the simulation in 
SADScript. 
 
 

 1



Table of Contents 
 

SAD RMS ENVELOPE SIMULATION PRIMER ................................................ 1 

 
1 NOTES ON RUNNING THE SIMULATION................................................... 3 

1.1 Running the Simulation.................................................................................... 3 
1.2 Arguments of ScheffSimulate .......................................................................... 3 
1.3 Simulation Data................................................................................................. 5 
1.4 Modifying Beamline Parameters ..................................................................... 6 

2 BEAM PERVEANCE AND MULTI-CHARGED PARTICLE SIMULATION ..... 6 

3 THE SECOND-ORDER MOMENT MATRIX ............................................... 7 

4 IMPORTANT SAD FUNCTIONS AND THEIR LOCATIONS ...............ERROR! 
BOOKMARK NOT DEFINED. 
5 FUNCTION LIST AND CALLING HIERARCHY........................................... 9 

5.1 Module Scheff.n................................................................................................. 9 
5.2 Module Trace3dToSad.n................................................................................ 10 
5.3 Module TwissUtility.n..................................................................................... 10 
5.4 Module MatrixFunctions.n ............................................................................ 10 
5.5 Internal Additions to the SAD Interpreter................................................... 11 

6 EXAMPLE CODE..................................................................................... 12 

7 OUTPUT.................................................................................................. 15 

 

 2



1 Notes on Running the Simulation 

1.1 Units 
The simulation uses all MKS units, except for beam energies and particle charges.  

Particle charges are normalized by the unit charge q so that they appear as integral 
quantities, positive or negative.  Beam energies are in electron-Volts (including mass 
energies).  All statistical quantities are given in the RMS values, for example, all 
emittances are specified as RMS emittances rather than effective emittance or normalized 
emittance. 

1.2 Running the Simulation 
The general procedure for running the simulation is to load the input deck, specify the 

initial beam parameters, convert them from Trace3D units to SAD units if necessary, then 
run the simulation with a call to ScheffSimulate[].  The results of the simulation 
are returned by the function and may be processed as desired.   

 
Before the call to ScheffSimulate[] can be made, there are several SAD 
environment parameters that must be set.  We list them below with at short explanation. 
 
TRPT; ! Simulate a transport section 
INS;  ! Treat lattice as an insertion device (not part of a ring) 
NOCOD; ! No closed orbit dispersion 
RFSW; ! Radio frequency standing wave – otherwise traveling wave structures 
 
Also, to use the function PlotBeamBeta[] you should set the following parameter 
 
$DisplayFunction = CanvasDrawer; 
 

1.3 Arguments of ScheffSimulate[] 
ScheffSimulate[] uses an adaptive stepping procedure.  Consequently, there 

are several numerical parameters, as well as the beam parameters, that can be passed to 
ScheffSimulate[] to fine tune this integration process.  All of the numerical 
parameters are optional parameters having default values.  These default values have 
been set for a reasonable performance/precision tradeoff.  However, for some cases you 
may wish to experiment to see which gives you the better performance and/or solution.  
Consequently, we list here all the arguments, their description, and their default values if 
they are optional. 

 

{{sn},{γn},{σn}} = ScheffSimulate[K0, σ0, h0:0.01, εsoln:10-5, ∆h:0.05, hmax:0.0] 
 
o K0 = Initial generalized beam perveance of the beam, that is, the perveance at the 

entrance of the beamline.   This parameter determines the space charge force and is 

 3



dependent upon particle energy.  For a detailed description of generalized perveance 
K see Section 2. 

o σ0 = Initial second-order moment matrix of the beam.  This is the 6×6 real, symmetric 
matrix containing all the second-order moments of the particle beam (with respect to 
the beam distribution).  For a description of the initial moment matrix σ0, and the 
moment matrix σ in general see Section 3. 

o h0 (optional) = The initial step size to used to start the adaptive integration algorithm.  
The integration algorithm continually adjusts the actually step size h to maintain the 
error tolerance specified by the argument εsoln (see below).  Choosing an initial step 
close too small will marginally slow the solution time, while choosing a value too 
large will not significantly affect the solution time.  The current default value of h0 is 
1 cm. 

o εsoln (optional) = The integration algorithm is designed to maintain a specific accuracy 
in the computed solution.  Morever, it is designed to keep the step size h as large as 
possible such that ||σsim − σsoln|| ≤ εsoln at each step, where σsim is the simulated 
moment matrix and σsoln is the “exact” moment matrix.  This technique provides the 
fastest solution time while maintaining the given error tolerance.  The current default 
value of εsoln is 10−5. 

o ∆h (optional) = Slack tolerance parameter.  For each integration step in the simulation, 
a new value of the step size h’ is computed.  If h’ is greater than the previous step h, 
the integration step must be rolled back and the solution recomputed with new step 
size h’ in order to maintain the solution tolerance εsoln.  However, if h’ is only 
marginally smaller than h (perhaps due to noise or rounding errors), this is a 
significant waste of CPU time.  Thus, we only change the integration step size if 
|h’−h|/h > ∆h.  (The reason for the absolute value is that we also must recompute the 
element sub-transfer matrix exp(hA) if h is changed in either direction.)  Thus, ∆h 
provides slack for h to “jitter” before the adaptive stepping is triggered.  
Consequently, ∆h can save significant CPU time, however, choosing a value to large 
will compromise the accuracy of the solution and the solution tolerance εsoln.  The 
current default value of ∆h is 5%. 

o hmax (optional) = Maximum allowable step size.  For whatever reason, it is possible 
for the user to specify a maximum step size for the adaptive stepping algorithm. This 
value will prevent the algorithm from taking any step sizes h greater than hmax.  To 
turn off this feature set hmax = 0.  The current default value of hmax is 0 (no maximum 
step size). 

1.4 Results of ScheffSimulate[] 
Here we list the returned values of ScheffSimulate[] along with a description.  

No output of ScheffSimulate[] is stored in the SAD environment.  It is all returned 
by the function as a list of objects. 

 

 4



{{sn},{γn},{σn}} = ScheffSimulate[K0, σ0, h0:0.01, εsoln:10-5, ∆h:0.05, hmax:0.0] 
 

o {sn} = Set of element entrance and exit positions along the beamline.  The first 
value in this list, s0, is the entrance position of the first beamline element, that 
is, element n = 0.  Typically this value is s0 = 0.  The following values are the 
entrance positions of the beamline elements proceeding downstream.  Note 
that the exit position of element n is the entrance position of element n + 1.  
Thus, the last value in {sn} is the exit position of the final beamline element. 

o {γn} = Set of design relativistic parameters at each beamline element.  Note 
that since there is a one-to-one correspondence between this set and the 
number of beamline elements, there is one less value in {γn} as compared to 
{sn}. 

o {σn} = Set of beam moment matrices at each location in {sn}.  These values 
are the main result of the RMS envelope simulation and contain all the beam 
state data.  For a complete description of the second-order moment matrix σ 
see Section 3. 

1.5 Simulation Data 
The input deck is typically located in a separate file and is loaded into the SADScript 

environment using the GetMAIN[InputDeckFile] function of SAD.  Once the input deck 
is loaded, you must extract the beamline that you wish to simulate with the call BL = 
ExtractBeamLine[BeamLineName].  Finally the beamline is specified by the FFS 
function USE BL. 

 
Within input deck file, along with the definition of the lattice under simulation, there 

should be the following parameter statements 

 
MASS   = 0.939294 GEV; 
CHARGE = -1; 
MOMENTUM = 0.610624 GEV; 
 
which specify the mass, charge, and initial momentum of the beam particle, respectively 
(we have used the example of an 181 MeV proton).  These parameters are used as design 
parameters for the machine lattice. 
 

The other beam parameters are specified as arguments to the main simulation 
function ScheffSimulate[K0, σ0].  Specifically, these arguments are the initial 
generalized beam perveance K0, the initial moment matrix σ0 = 〈zzT〉 (the other arguments 
are optional numerical tuning parameters).  For a complete description of these 
parameters see Section 1.3.   

 
The output data of ScheffSimulate[] is not stored in the SAD environment.  

The returned values of element positions {sn}, gammas at each element {γn}, and moment 
matrix at each element {σn} are all independent of SAD. 

 5



1.6 Modifying Beamline Parameters 
ScheffSimulate[] retrieves the beamline parameters directly from the SAD 

environment.  So it is possible to change a beamline element parameter directly then 
immediately re-run the simulation.  For example, we may use a call to the SADScript 
environment such as 

 
ELEMENT[“K1”, “QuadHor02”]  = PI/3; 
 
which will set the parameter “K1” of the element named “QuadHor02” to PI/3.  The 
simulation can then be re-run with the new element setting.  However, except for MASS, 
CHARGE, and MOMENTUM, ScheffSimulate[] ignores all other beam input 
parameters in the SAD environment.  The other beam parameters must be set using the 
values of initial generalized beam perveance K0 and initial moment matrix σ0 (as 
arguments to ScheffSimulate[]).   
 

2 Perveance and Simulating Particles with Multiple Charges 
The generalized beam perveance K is given by 

32
0

322
0

33
0

11
2

1
22 γβπεγβπεγπε RE

I
mc

qI
vm

qIK === ,  (1) 

where q is the unit charge, ε0 is the electric permittivity of free-space, v is the particle 
velocity, c is the speed of light, β = v/c is the normalize velocity, γ is the relativistic factor, 
I = qNlv  is the average current with Nl  being the number of particles per unit length, and 
ER = mc2/q is the rest energy of the beam particle in electron-Volts. 

 
For an RF system with frequency f, bunch charge Q is related to I as 

Q =
I
f

,        (2) 

where we assume the bunch spacing is βλ.  Substituting Eq. (2) to (1), we find 

32
0

322
0

33
0

1
222 γβπεγβπεγπε

f
E

Qf
mc

qQ
vm

qQfK
R

=== ,  (3) 

which means that we need information on q, m, and Q for determining K.  Physically 
speaking, the space-charge field E is determined by Q, and the space-charge forces acted 
on the individual particles are determined by the product of q and E.  So, it is natural to 
have qQ in K. 

Interpreting “m” as “m/q”, you can simulate multi-charged particles (with q other than 
1 or −1), because K depends on q/m, not on q and m independently.  Thus, for a particle 
of charge nq and the same mass m, we would substitute ER → ER/n in all the simulation 
functions (e.g., ComputePerveance[], TraceToSadLongTwiss[], etc.) 

 6



3 The Second-Order Moment Matrix 

3.1 Definition of the Moment Matrix 
We denote the phase space coordinates of a charged particle as z = (x x’ y y’ z dp/p0)T 

where x, y, and z are the offsets of the particle from the synchronous particle position in 
the three orthogonal directions, 0/// ppsxdsdxx x===′ &&  ,  0/// ppsydsdyy y===′ && , 
s is the path length parameter, the over-dot represents differentiation with respect to time, 
p0 is the design momentum of the synchronous particle, and dp is the difference in 
momentum from the design momentum.  Every beam particle can be identified by its 
position z in phase space. Consider a distribution of particles in phase space, represented 
by the beam density function f : ℜ6 → ℜ.  Thus, f(z)d6z is the number of particles within 
a differential volume d6z at location z in phase space.  For any function g : ℜ6 → ℜ on 
phase space, the moment of g with respect to the distribution f, denoted 〈g〉, is defined by 
〈g〉 ≡ ∫g(z)f(z)d6z.  The matrix of second-order moments of the beam, or moment matrix σ, 
is defined by σ ≡ 〈zzT〉, where zzT is the outer product of the phase space coordinates.  
Expanding out this definition we see that σ appears as 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

′′

′′

′′′′′′′

′′

′′′′′′′

′′

==

2

2

2

2

2

2

δδδδδδ
δ
δ
δ
δ
δ

zyyxx
zzzyyzzxxz
yzyyyyyxyx
yyzyyyyxxy
xzxyxyxxxx
xxzyxxyxxx

Tzzσ ,  (4) 

where we have abbreviated dp/p0 as δ.  This matrix is the main object of concern in the 
simulation containing all the particle beam information. 

3.2 Initial Moment Matrix 
To initialize the simulation, we need an initial value for σ, which we denote as σ0.  

This quantity is computed from the initial Twiss parameters of the beam in all three phase 
planes.  Given the initial Twiss parameters )~,,( xxx εβα , )~,,( yyy εβα , )~,,( zzz εβα , for 
each phase plane x, y, and z, respectively, the value of σ0 should be 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−
−

−
−

−
−

=

zzzz

zzzz

yyyy

yyyy

xxxx

xxxx

εγεα
εαεβ

εγεα
εαεβ

εγεα
εαεβ

~~0000

~~0000
00~~00
00~~00
0000~~
0000~~

0σ ,  (5) 

where the tilde indicate RMS quantities.  Note that there is not coupling between phase 
planes for the initial σ matrix.  During the simulation this condition may change (e.g., in 

 7



the presence of bending magnets, misalignments, etc.).  The function 
CorrelationMatrix6D[] is provided for computing this matrix given the initial 
Twiss parameters. 

3.3 Propagation of the Moment Matrix 
In linear beam optics the phase space coordinates of a particle transform as zn+1 = Φn 

zn where Φn is the transfer matrix of beamline element n, zn is the phase space coordinate 
of the particle at the entrance of n, and zn+1 is the phase space coordinate at the exit of n.  
With no space charge, we may derive the propagation equations for the moment matrix 
directly from its definition and the propagation equations for the single particle.  For a 
beamline element n the result is  

σn+1 = ΦnσnΦn
T        (6) 

where Φn is the transfer matrix of element n, σn is the moment matrix at the entrance of n, 
and σn+1 is the moment matrix at the exit of n.  This is the tenet upon which the 
simulation is built.  However, to include space charge effects we must determine the self 
forces (from σ) then augment the dynamics σn+1 = ΦnσnΦn

T accordingly. 

4 SADScript Packages and Important Functions  
The following is a listing of the new SADScript packages used in the RMS envelope 

simulation.  A description of each package is given, along with a listing of the functions 
that you will typically use most in the SAD RMS envelope simulation.  The functions are 
included with their arguments, shown with the standard notion found in the literature.  A 
complete listing of all the implemented functions, along with a brief description, is 
provided in Section 5. 

 
 oldsad/Packages/Scheff.n 

o {{sn},{γn},{σn}} = ScheffSimulate[K0, σ0, h0:0.01, ε:10-5, ∆h:0.05, hmax:0.0] 
o {{sn},{γn},{Φn}} = GetBeamLineElementData[] 
o SaveBeamMatrixData[file, {sn}, {γn}, {σn}] 
o PlotBeamBeta[{sn},{σn}] 
 

This package is the main simulation package and includes the simulation driver, 
ScheffSimulate[K0, σ0, ∆s:0.01] whose arguments are the initial generalized beam 
perveance K0, the initial moment matrix σ0 = 〈zzT〉 and the (optional) initial step size h0, 
the (optional) solution error tolerance ε, the (optional) slack tolerance in computing new 
stizes ∆h, and the (optional) maximum allowable step size hmax.  (For a complete 
description of ScheffSimulate[] see Section 1.3).  Its function directly depends 
upon one other module, MatrixFunctions.n.  You will typically use the function 
ComputePerveance[] from Trace3dToSad.n, to compute the beam perveance 
from the beam parameters, and CorrelationMatrix6D[] from 
TwissUtility.n to compute the initial moment matrix σ0 from the initial Twiss 
parameters of the beam. 

 

 8



 
 oldsad/Packages/Trace3dToSad.n 

o K = ComputePerveance[f, ER, W, Q]  
o {α,β,ε}SAD = TraceToSadTransTwiss[{α,β,ε}T3D] 
o {α,β,ε}SAD = TraceToSadLongTwiss[f, Er, W, {α,β,ε}T3D] 

A convenience module for converting the parameters used in Trace3D (i.e., those found 
in the Trace3D input file) to those used by SAD, and vice-versa.  The two codes use 
different units so it is helpful to have functions to convert between them.  The most used 
are listed above, where the argument f is the RF frequency (Hz), ER is the beam particle 
rest energy (=mc2) in (eV), W is the beam kinetic energy (eV), Q is the bunch charge (C), 
and {α,β,ε} are the Twiss parameters for a single phase plane.  This module has no 
dependencies. 

 
 

 oldsad/Packages/TwissUtility.n 
o σ = CorrelationMatrix6D[{α,β,ε}x, {α,β,ε}y, {α,β,ε}z] 

A convenience module for working with the Twiss parameters of a beam.  The most used 
function will typically be CorrelationMatrix6D[], which builds a  6×6 moment 
matrix σ from Twiss parameters in the three phase planes.  The moment matrix is block 
diagonal and composed of 2×2 sub-matrices from each of the uncoupled phase planes.  
This module has no dependencies. 

 
 oldsad/Packages/MatrixFunctions.n 

o F = MatrixLog[Φ] 
o Φ = MatrixExp[F] 

Many matrix functions are included in this module.  The two most important are the 
matrix logarithm MatrixLog[] and matrix exponential MatrixExp[].  However, 
there are also functions for computing matrix inner products and norms.  The matrix 
logarithm function is designed for symplectic arguments and is not robust in general.  
The function may no converge for arguments sufficiently far from the identity matrix, 
even though the argument does, indeed, have a logarithm. 

5 Function List and Calling Hierarchy 
The follow is list of all the new functions added to the SAD Environment, both as 

SADScript and compiled code.  A brief description of the function is provided in the 
margin.  For functions implemented in SADScript, a full description is given in the 
source code, including the arguments and the returned values.  All SADScript modules 
are located under the oldsad/Packages/ directory in the repository. 

5.1 Module Scheff.n 
ScheffSimulate   - Main RMS simulation function  

ScheffZeroPropagate  - envelope simulation w/out space charge (K=0) 
 
ScheffPropagate  - envelope simulation with space charge 

ScheffPropElem 

 9



 StepSigmaMatrix – steps the moment matrix a specified length 
 CompStepSize - computes the new step size for integration 
ScheffGenerator1 - compute the space charge matrix in beam frame 
ScheffGenerator2 - compute the space charge matrix in the lab frame 
ScheffDecoup  - decouple the phase planes in configuration space 
ScheffDecoupRotMatrix – get matrix in SO(6) zeroing largest 〈xixj〉 

 
SaveBeamMatrixData   - save solution data to disk 
 
PlotBeamBeta    - plot solution beta function in three phase planes 
 
GetBeamlineElementData  - return beamline data {{sn},{γn},{Φn}} 
 

5.2 Module Trace3dToSad.n 
ComputePerveance  - Compute generalized beam perveance 
TraceToSadCoords  - Convert Trace3D phase space coordinates to SAD coords 
SadToTraceCoords  - Convert SAD phase space coordinates to Trace3D coords 
TraceToSadTransTwiss - Convert Trace3D transverse Twiss parameters to SAD  
TraceToSadLongTwiss - Convert Trace3D longitudinal Twiss parameters to SAD 
SadToTraceTransTwiss - Convert SAD transverse Twiss parameters to Trace3D 
SadToTraceLongTwiss - Convert SAD longitudinal Twiss parameters to Trace3D 
 

5.3 Module TwissUtility.n 
CorrelationMatrix6D  - Build full 6×6 second-order moment matrix from Twiss  
CorrelationMatrixTrans  - Build transverse 4×4 moment matrix from Twiss 

CorrelationMatrix - Build 2×2 moment matrix for single phase plane 
 
GetEnvelopeFromTwiss - Compute (√〈x2〉, √〈x2〉, ε) from Twiss parameters 
 
GetTwissFromEnvelope - Compute (α, β, ε) from the beam envelope 
 

5.4 Module MatrixFunctions.n 
MatrixLog    - Computes the log of a matrix close to identity 

MatrixInnerProd2  - Computes the l2 inner product of a matrix in ℜn×n

 
MatrixZassen   - Zassenhaus formula of two matrices to 2nd order  

MatrixCommutator - Computes the commutator of two matrices 
 
 MatrixLogTaylor  - Taylor expansion of matrix logarithm function 
 

MatrixExp   - Compute the exponential of a matrix 
 MatrixNorm2  - Compute the l2 norm (squared) of a matrix in ℜn×n

 

 10



  MatrixInnerProd2 - Induces the l2 norm  
 

MatrixExpTaylor - Taylor expansion of the matrix exponent. function  
 

5.5 Internal Additions to the SAD Interpreter 
EllipticRd(x,y,z)  - Computes the Carlson elliptic integral of the second kind given by the 

formula  
 

( ) ( ) ( )∫
∞

+++
≡

0 2/32/12/12
3),,(

ztytxt
dtzyxRD  

 
 
 

 11



6  Example Code 
Below is a code excerpt from a SADScript file simulating the beam transport section 

of the J-PARC machine.  This excerpt lists the essential code for a complete RMS 
envelope simulation.  The complete file can be found on the SAD cluster at the location 
/usr/users/ckallen/code/testing/ScheffTest.sad. 

 
!!======================================== 
!! 
!!  Initialize SAD 
!! 
!!======================================== 
 
 
FFS; ! Begin SADScript 
 
 
! 
!  Load Beamline 
! 
 
GetMAIN["~ckallen/J-Parc/linac/simdb-LI_L3BT01-nopmq0000.sad"]; 
L3BT01 = ExtractBeamLine["L3BT01all"]; 
 
USE L3BT01; 
 
 
! 
! Initialize SAD Environment – These are important! 
! 
 
TRPT;  ! a transport line, not a ring 
INS;  ! mimic an insertion device 
CAL;  ! do SAD calculation of beamline 
 
NOCOD; ! no closed orbit correction 
RFSW; ! this is for RF gaps, use standing wave structure 
 
$DisplayFunction = CanvasDrawer;  ! if you want to use PlotBeamBeta[] 
 

 12



! 
!  INITIALIZE SIMULATION 
! 
 
 
! 
!    TRACE3D Parameters 
! 
 
f  = 324.0e6;         ! RF frequency (Hz) 
 
Er = 939.29432e6;     ! particle rest energy (eV) 
W  = 181.0338e6;      ! beam kinetic energy (eV) 
XI = 30.0e-3          ! beam current (A) 
 
vecTwissXt3d = {-0.44117, 5.774, 1.889}; 
vecTwissYt3d = {0.21808, 6.4229, 1.706}; 
vecTwissZt3d = {0.3095, 2.0888, 466.99}; 
 
! 
! Numerical Parameters 
! 
 
h0 = 0.01;  ! initial step length 
errSoln = 1.0e-5; ! solution error tolerance 
hslack = 0.05;  ! adaptive step backlash tolerance 
hmax = 0.0;  ! maximum step length (=0 turned off) 
 
 
! 
!    Compute SAD Parameters (Convert from Trace3D) 
! 
 
Q  = XI/f;                            ! beam bunch charge (C) 
 
K0   = ComputePerveance[f, Er, W, Q];     
 
 
vecTwissX = TraceToSadTransTwiss[vecTwissXt3d]; 
vecTwissY = TraceToSadTransTwiss[vecTwissYt3d]; 
vecTwissZ = TraceToSadLongTwiss[f, Er, W, vecTwissZt3d]; 
 
sig0 = CorrelationMatrix6D[vecTwissX, vecTwissY, vecTwissZ]; 
 
 
 

 13



! 
!  RUN SIMULATION 
! 
 
 
! Run simulation 
{lstPos, lstGamma, lstSig} = ScheffSimulate[K0, sig0, h0, errSoln, hslack, hmax]; 
 
! Store results 
SaveBeamMatrixData[“RmsEnvOutput.txt”, lstPos, lstGamma, lstSig]; 
 
!  Look at the Results 
PlotBeamBeta[lstPos, lstSig]; 
 
Exit[]; 
 

 14



7 Output 

 

 15


	Table of Contents
	Notes on Running the Simulation
	Units
	Running the Simulation
	Arguments of ScheffSimulate[]
	Results of ScheffSimulate[]
	Simulation Data
	Modifying Beamline Parameters

	Perveance and Simulating Particles with Multiple Charges
	The Second-Order Moment Matrix
	Definition of the Moment Matrix
	Initial Moment Matrix
	Propagation of the Moment Matrix

	SADScript Packages and Important Functions
	Function List and Calling Hierarchy
	Module Scheff.n
	Module Trace3dToSad.n
	Module TwissUtility.n
	Module MatrixFunctions.n
	Internal Additions to the SAD Interpreter

	Example Code
	Output

