SAD RMS Envelope Simulation Manual
Christopher K. Allen and Masanori Ikegami
KEK, Tsukuba, Ibaraki 305-0801 Japan

December, 2005

The capability for RMS envelope simulation, including space charge, has been implemented in the SAD environment.  This note is a summary of this feature.  Included is a discussion on running the simulation, along with a description of the simulation parameters.  Also included are a listing of the most used functions and their arguments, a listing of all the new functions implemented, along with a brief description and their calling hierarchy, and a code excerpt demonstrating how to use the simulation in SADScript.
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1 Notes on Running the Simulation

1.1 Units

The simulation uses all MKS units, except for beam energies and particle charges.  Particle charges are normalized by the unit charge q so that they appear as integral quantities, positive or negative.  Beam energies are in electron-Volts (including mass energies).  All statistical quantities are given in the RMS values, for example, all emittances are specified as RMS emittances rather than effective emittance or normalized emittance.
1.2 Running the Simulation
The general procedure for running the simulation is to load the input deck, specify the initial beam parameters, convert them from Trace3D units to SAD units if necessary, then run the simulation with a call to ScheffSimulate[].  The results of the simulation are returned by the function and may be processed as desired.  

Before the call to ScheffSimulate[] can be made, there are several SAD environment parameters that must be set.  We list them below with at short explanation.

TRPT;
! Simulate a transport section

INS;

! Treat lattice as an insertion device (not part of a ring)

NOCOD;
! No closed orbit dispersion

RFSW;
! Radio frequency standing wave – otherwise traveling wave structures

Also, to use the function PlotBeamBeta[] you should set the following parameter

$DisplayFunction = CanvasDrawer;
1.3 Arguments of ScheffSimulate[]
ScheffSimulate[] uses an adaptive stepping procedure.  Consequently, there are several numerical parameters, as well as the beam parameters, that can be passed to ScheffSimulate[] to fine tune this integration process.  All of the numerical parameters are optional parameters having default values.  These default values have been set for a reasonable performance/precision tradeoff.  However, for some cases you may wish to experiment to see which gives you the better performance and/or solution.  Consequently, we list here all the arguments, their description, and their default values if they are optional.

{{sn},{(n},{(n}} = ScheffSimulate[K0, (0, h0:0.01, (soln:10-5, (h:0.05, hmax:0.0]

· K0 = Initial generalized beam perveance of the beam, that is, the perveance at the entrance of the beamline.   This parameter determines the space charge force and is dependent upon particle energy.  For a detailed description of generalized perveance K see Section 2.
· (0 = Initial second-order moment matrix of the beam.  This is the 6(6 real, symmetric matrix containing all the second-order moments of the particle beam (with respect to the beam distribution).  For a description of the initial moment matrix (0, and the moment matrix ( in general see Section 3.
· h0 (optional) = The initial step size to used to start the adaptive integration algorithm.  The integration algorithm continually adjusts the actually step size h to maintain the error tolerance specified by the argument (soln (see below).  Choosing an initial step close too small will marginally slow the solution time, while choosing a value too large will not significantly affect the solution time.  The current default value of h0 is 1 cm.
· (soln (optional) = The integration algorithm is designed to maintain a specific accuracy in the computed solution.  Morever, it is designed to keep the step size h as large as possible such that ||(sim ( (soln|| ( (soln at each step, where (sim is the simulated moment matrix and (soln is the “exact” moment matrix.  This technique provides the fastest solution time while maintaining the given error tolerance.  The current default value of (soln is 10(5.
· (h (optional) = Slack tolerance parameter.  For each integration step in the simulation, a new value of the step size h’ is computed.  If h’ is greater than the previous step h, the integration step must be rolled back and the solution recomputed with new step size h’ in order to maintain the solution tolerance (soln.  However, if h’ is only marginally smaller than h (perhaps due to noise or rounding errors), this is a significant waste of CPU time.  Thus, we only change the integration step size if |h’(h|/h > (h.  (The reason for the absolute value is that we also must recompute the element sub-transfer matrix exp(hA) if h is changed in either direction.)  Thus, (h provides slack for h to “jitter” before the adaptive stepping is triggered.  Consequently, (h can save significant CPU time, however, choosing a value to large will compromise the accuracy of the solution and the solution tolerance (soln.  The current default value of (h is 5%.
· hmax (optional) = Maximum allowable step size.  For whatever reason, it is possible for the user to specify a maximum step size for the adaptive stepping algorithm. This value will prevent the algorithm from taking any step sizes h greater than hmax.  To turn off this feature set hmax = 0.  The current default value of hmax is 0 (no maximum step size).
1.4 Results of ScheffSimulate[]
Here we list the returned values of ScheffSimulate[] along with a description.  No output of ScheffSimulate[] is stored in the SAD environment.  It is all returned by the function as a list of objects.

{{sn},{(n},{(n}} = ScheffSimulate[K0, (0, h0:0.01, (soln:10-5, (h:0.05, hmax:0.0]


· {sn} = Set of element entrance and exit positions along the beamline.  The first value in this list, s0, is the entrance position of the first beamline element, that is, element n = 0.  Typically this value is s0 = 0.  The following values are the entrance positions of the beamline elements proceeding downstream.  Note that the exit position of element n is the entrance position of element n + 1.  Thus, the last value in {sn} is the exit position of the final beamline element.

· {(n} = Set of design relativistic parameters at each beamline element.  Note that since there is a one-to-one correspondence between this set and the number of beamline elements, there is one less value in {(n} as compared to {sn}.

· {(n} = Set of beam moment matrices at each location in {sn}.  These values are the main result of the RMS envelope simulation and contain all the beam state data.  For a complete description of the second-order moment matrix ( see Section 3.
1.5 Simulation Data

The input deck is typically located in a separate file and is loaded into the SADScript environment using the GetMAIN[InputDeckFile] function of SAD.  Once the input deck is loaded, you must extract the beamline that you wish to simulate with the call BL = ExtractBeamLine[BeamLineName].  Finally the beamline is specified by the FFS function USE BL.

Within input deck file, along with the definition of the lattice under simulation, there should be the following parameter statements

MASS   = 0.939294 GEV;

CHARGE = -1;

MOMENTUM = 0.610624 GEV;

which specify the mass, charge, and initial momentum of the beam particle, respectively (we have used the example of an 181 MeV proton).  These parameters are used as design parameters for the machine lattice.

The other beam parameters are specified as arguments to the main simulation function ScheffSimulate[K0, (0].  Specifically, these arguments are the initial generalized beam perveance K0, the initial moment matrix (0 = (zzT( (the other arguments are optional numerical tuning parameters).  For a complete description of these parameters see Section 1.3.  
The output data of ScheffSimulate[] is not stored in the SAD environment.  The returned values of element positions {sn}, gammas at each element {(n}, and moment matrix at each element {(n} are all independent of SAD.
1.6 Modifying Beamline Parameters

ScheffSimulate[] retrieves the beamline parameters directly from the SAD environment.  So it is possible to change a beamline element parameter directly then immediately re-run the simulation.  For example, we may use a call to the SADScript environment such as

ELEMENT[“K1”, “QuadHor02”]  = PI/3;

which will set the parameter “K1” of the element named “QuadHor02” to PI/3.  The simulation can then be re-run with the new element setting.  However, except for MASS, CHARGE, and MOMENTUM, ScheffSimulate[] ignores all other beam input parameters in the SAD environment.  The other beam parameters must be set using the values of initial generalized beam perveance K0 and initial moment matrix (0 (as arguments to ScheffSimulate[]).  

2 Perveance and Simulating Particles with Multiple Charges
The generalized beam perveance K is given by
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where q is the unit charge, (0 is the electric permittivity of free-space, v is the particle velocity, c is the speed of light, ( = v/c is the normalize velocity, ( is the relativistic factor, 
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 being the number of particles per unit length, and ER = mc2/q is the rest energy of the beam particle in electron-Volts.

For an RF system with frequency f, bunch charge Q is related to I as
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where we assume the bunch spacing is .  Substituting Eq. (2) to (1), we find
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which means that we need information on q, m, and Q for determining K.  Physically speaking, the space-charge field E is determined by Q, and the space-charge forces acted on the individual particles are determined by the product of q and E.  So, it is natural to have qQ in K.

Interpreting “m” as “m/q”, you can simulate multi-charged particles (with q other than 1 or (1), because K depends on q/m, not on q and m independently.  Thus, for a particle of charge nq and the same mass m, we would substitute ER ( ER/n in all the simulation functions (e.g., ComputePerveance[], TraceToSadLongTwiss[], etc.)

3 The Second-Order Moment Matrix

3.1 Definition of the Moment Matrix
We denote the phase space coordinates of a charged particle as z = (x x’ y y’ z dp/p0)T where x, y, and z are the offsets of the particle from the synchronous particle position in the three orthogonal directions, 
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, s is the path length parameter, the over-dot represents differentiation with respect to time, p0 is the design momentum of the synchronous particle, and dp is the difference in momentum from the design momentum.  Every beam particle can be identified by its position z in phase space. Consider a distribution of particles in phase space, represented by the beam density function f : (6 ( (.  Thus, f(z)d6z is the number of particles within a differential volume d6z at location z in phase space.  For any function g : (6 ( ( on phase space, the moment of g with respect to the distribution f, denoted (g(, is defined by (g( ( (g(z)f(z)d6z.  The matrix of second-order moments of the beam, or moment matrix (, is defined by ( ( (zzT(, where zzT is the outer product of the phase space coordinates.  Expanding out this definition we see that ( appears as
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where we have abbreviated dp/p0 as (.  This matrix is the main object of concern in the simulation containing all the particle beam information.
3.2 Initial Moment Matrix
To initialize the simulation, we need an initial value for (, which we denote as (0.  This quantity is computed from the initial Twiss parameters of the beam in all three phase planes.  Given the initial Twiss parameters 
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where the tilde indicate RMS quantities.  Note that there is not coupling between phase planes for the initial ( matrix.  During the simulation this condition may change (e.g., in the presence of bending magnets, misalignments, etc.).  The function CorrelationMatrix6D[] is provided for computing this matrix given the initial Twiss parameters.
3.3 Propagation of the Moment Matrix

In linear beam optics the phase space coordinates of a particle transform as zn+1 = (n zn where (n is the transfer matrix of beamline element n, zn is the phase space coordinate of the particle at the entrance of n, and zn+1 is the phase space coordinate at the exit of n.  With no space charge, we may derive the propagation equations for the moment matrix directly from its definition and the propagation equations for the single particle.  For a beamline element n the result is 
(n+1 = (n(n(nT 






(6)
where (n is the transfer matrix of element n, (n is the moment matrix at the entrance of n, and (n+1 is the moment matrix at the exit of n.  This is the tenet upon which the simulation is built.  However, to include space charge effects we must determine the self forces (from () then augment the dynamics (n+1 = (n(n(nT accordingly.

4 SADScript Packages and Important Functions 
The following is a listing of the new SADScript packages used in the RMS envelope simulation.  A description of each package is given, along with a listing of the functions that you will typically use most in the SAD RMS envelope simulation.  The functions are included with their arguments, shown with the standard notion found in the literature.  A complete listing of all the implemented functions, along with a brief description, is provided in Section 5.

· oldsad/Packages/Scheff.n

· {{sn},{(n},{(n}} = ScheffSimulate[K0, (0, h0:0.01, (:10-5, (h:0.05, hmax:0.0]

· {{sn},{(n},{(n}} = GetBeamLineElementData[]

· SaveBeamMatrixData[file, {sn}, {(n}, {(n}]
· PlotBeamBeta[{sn},{(n}]

This package is the main simulation package and includes the simulation driver, ScheffSimulate[K0, (0, (s:0.01] whose arguments are the initial generalized beam perveance K0, the initial moment matrix (0 = (zzT( and the (optional) initial step size h0, the (optional) solution error tolerance (, the (optional) slack tolerance in computing new stizes (h, and the (optional) maximum allowable step size hmax.  (For a complete description of ScheffSimulate[] see Section 1.3).  Its function directly depends upon one other module, MatrixFunctions.n.  You will typically use the function ComputePerveance[] from Trace3dToSad.n, to compute the beam perveance from the beam parameters, and CorrelationMatrix6D[] from TwissUtility.n to compute the initial moment matrix (0 from the initial Twiss parameters of the beam.

· oldsad/Packages/Trace3dToSad.n

· K = ComputePerveance[f, ER, W, Q] 
· {(,(,(}SAD = TraceToSadTransTwiss[{(,(,(}T3D]

· {(,(,(}SAD = TraceToSadLongTwiss[f, Er, W, {(,(,(}T3D]
A convenience module for converting the parameters used in Trace3D (i.e., those found in the Trace3D input file) to those used by SAD, and vice-versa.  The two codes use different units so it is helpful to have functions to convert between them.  The most used are listed above, where the argument f is the RF frequency (Hz), ER is the beam particle rest energy (=mc2) in (eV), W is the beam kinetic energy (eV), Q is the bunch charge (C), and {(,(,(} are the Twiss parameters for a single phase plane.  This module has no dependencies.
· oldsad/Packages/TwissUtility.n

· ( = CorrelationMatrix6D[{(,(,(}x, {(,(,(}y, {(,(,(}z]

A convenience module for working with the Twiss parameters of a beam.  The most used function will typically be CorrelationMatrix6D[], which builds a  6(6 moment matrix ( from Twiss parameters in the three phase planes.  The moment matrix is block diagonal and composed of 2(2 sub-matrices from each of the uncoupled phase planes.  This module has no dependencies.
· oldsad/Packages/MatrixFunctions.n

· F = MatrixLog[(]

· ( = MatrixExp[F]

Many matrix functions are included in this module.  The two most important are the matrix logarithm MatrixLog[] and matrix exponential MatrixExp[].  However, there are also functions for computing matrix inner products and norms.  The matrix logarithm function is designed for symplectic arguments and is not robust in general.  The function may no converge for arguments sufficiently far from the identity matrix, even though the argument does, indeed, have a logarithm.
5 Function List and Calling Hierarchy
The follow is list of all the new functions added to the SAD Environment, both as SADScript and compiled code.  A brief description of the function is provided in the margin.  For functions implemented in SADScript, a full description is given in the source code, including the arguments and the returned values.  All SADScript modules are located under the oldsad/Packages/ directory in the repository.
5.1 Module Scheff.n

ScheffSimulate


- Main RMS simulation function 
ScheffZeroPropagate

- envelope simulation w/out space charge (K=0)
ScheffPropagate

- envelope simulation with space charge
ScheffPropElem

StepSigmaMatrix – steps the moment matrix a specified length

CompStepSize
- computes the new step size for integration
ScheffGenerator1
- compute the space charge matrix in beam frame
ScheffGenerator2
- compute the space charge matrix in the lab frame

ScheffDecoup

- decouple the phase planes in configuration space
ScheffDecoupRotMatrix – get matrix in SO(6) zeroing largest (xixj(
SaveBeamMatrixData


- save solution data to disk
PlotBeamBeta



- plot solution beta function in three phase planes

GetBeamlineElementData

- return beamline data {{sn},{(n},{(n}}
5.2 Module Trace3dToSad.n

ComputePerveance

- Compute generalized beam perveance
TraceToSadCoords

- Convert Trace3D phase space coordinates to SAD coords
SadToTraceCoords

- Convert SAD phase space coordinates to Trace3D coords
TraceToSadTransTwiss
- Convert Trace3D transverse Twiss parameters to SAD 
TraceToSadLongTwiss
- Convert Trace3D longitudinal Twiss parameters to SAD
SadToTraceTransTwiss
- Convert SAD transverse Twiss parameters to Trace3D
SadToTraceLongTwiss
- Convert SAD longitudinal Twiss parameters to Trace3D
5.3 Module TwissUtility.n

CorrelationMatrix6D

- Build full 6(6 second-order moment matrix from Twiss 
CorrelationMatrixTrans 
- Build transverse 4(4 moment matrix from Twiss

CorrelationMatrix
- Build 2(2 moment matrix for single phase plane

GetEnvelopeFromTwiss
- Compute (((x2(, ((x2(, () from Twiss parameters
GetTwissFromEnvelope
- Compute ((, (, () from the beam envelope
5.4 Module MatrixFunctions.n

MatrixLog



- Computes the log of a matrix close to identity
MatrixInnerProd2

- Computes the l2 inner product of a matrix in (n(n
MatrixZassen


- Zassenhaus formula of two matrices to 2nd order 
MatrixCommutator
- Computes the commutator of two matrices

MatrixLogTaylor

- Taylor expansion of matrix logarithm function
MatrixExp


- Compute the exponential of a matrix

MatrixNorm2

- Compute the l2 norm (squared) of a matrix in (n(n


MatrixInnerProd2
- Induces the l2 norm 
MatrixExpTaylor
- Taylor expansion of the matrix exponent. function 
5.5 Internal Additions to the SAD Interpreter

EllipticRd(x,y,z)  - Computes the Carlson elliptic integral of the second kind given by the formula 


[image: image13.wmf](

)

(

)

(

)

ò

¥

+

+

+

º

0

2

/

3

2

/

1

2

/

1

2

3

)

,

,

(

z

t

y

t

x

t

dt

z

y

x

R

D


6  Example Code

Below is a code excerpt from a SADScript file simulating the beam transport section of the J-PARC machine.  This excerpt lists the essential code for a complete RMS envelope simulation.  The complete file can be found on the SAD cluster at the location /usr/users/ckallen/code/testing/ScheffTest.sad.
!!========================================

!!

!!  Initialize SAD

!!

!!========================================

FFS;
! Begin SADScript

!

!  Load Beamline

!

GetMAIN["~ckallen/J-Parc/linac/simdb-LI_L3BT01-nopmq0000.sad"];

L3BT01 = ExtractBeamLine["L3BT01all"];

USE L3BT01;

!

!
Initialize SAD Environment – These are important!
!

TRPT;

! a transport line, not a ring
INS;

! mimic an insertion device
CAL;

! do SAD calculation of beamline
NOCOD;
! no closed orbit correction
RFSW;
! this is for RF gaps, use standing wave structure
$DisplayFunction = CanvasDrawer;

! if you want to use PlotBeamBeta[]
!

!  INITIALIZE SIMULATION

!

!

!    TRACE3D Parameters

!

f  = 324.0e6;        
! RF frequency (Hz)

Er = 939.29432e6;    
! particle rest energy (eV)

W  = 181.0338e6;     
! beam kinetic energy (eV)

XI = 30.0e-3         
! beam current (A)

vecTwissXt3d = {-0.44117, 5.774, 1.889};

vecTwissYt3d = {0.21808, 6.4229, 1.706};

vecTwissZt3d = {0.3095, 2.0888, 466.99};

!

!
Numerical Parameters

!

h0 = 0.01;

! initial step length

errSoln = 1.0e-5;
! solution error tolerance

hslack = 0.05;

! adaptive step backlash tolerance

hmax = 0.0;

! maximum step length (=0 turned off)

!

!    Compute SAD Parameters (Convert from Trace3D)
!

Q  = XI/f;                            ! beam bunch charge (C)

K0   = ComputePerveance[f, Er, W, Q];   


vecTwissX = TraceToSadTransTwiss[vecTwissXt3d];

vecTwissY = TraceToSadTransTwiss[vecTwissYt3d];

vecTwissZ = TraceToSadLongTwiss[f, Er, W, vecTwissZt3d];

sig0 = CorrelationMatrix6D[vecTwissX, vecTwissY, vecTwissZ];

!

!  RUN SIMULATION

!

! Run simulation

{lstPos, lstGamma, lstSig} = ScheffSimulate[K0, sig0, h0, errSoln, hslack, hmax];
! Store results

SaveBeamMatrixData[“RmsEnvOutput.txt”, lstPos, lstGamma, lstSig];

!  Look at the Results

PlotBeamBeta[lstPos, lstSig];

Exit[];
7 Output
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