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Abstract 
We have implemented a particle beam simulation 

engine based on modern software engineering principles 
with intent that it be a convenient model reference for 
high-level control applications.  The simulator is an 
autonomous subsystem of the high-level application 
framework XAL currently under development for the 
Spallation Neutron Source (SNS).  It supports multiple 
simulation techniques (i.e., single particle, multi-particle, 
envelope, etc.), automatically synchronizes with operating 
accelerator hardware, and also supports off-line design 
studies.  Moreover, since it is implemented using modern 
techniques in the Java language, it is portable across 
operating platforms, is maintainable, and upgradeable. 

INTRODUCTION 
 
To support the operation of the SNS accelerator we 

have built a development framework for high-level 
control applications called XAL (for a description of XAL 
see [2]).  The framework includes a simulation engine that 
we call the XAL model subsystem.  This subsystem 
works in conjunction with the application framework, or 
as a stand-alone particle beam simulator.  XAL contains a 
utility for automatically generating modeling lattices and 
synchronizing them with the operating machine.  Here we 
outline the architecture of the model subsystem and the 
mathematical models upon which it is based. 

DYNAMICS 
In all simulations we parameterize phase space using 

homogeneous coordinates in ℜ 6×{1}. Letting z denote a 
point in phase space it has the representation 

( )Tzzyyxx 1′′′≡z   (1) 

where the prime indicates differentiation with respect to 
the design path length parameter s.  Note that we use (z,z’) 
as the longitudinal phase coordinates rather than (z,∆p/p).  
Mathematicians typically use homogeneous coordinates to 
parameterize the real projective spaces ℜ Pn; they are also 
widely used in computer graphics for three-dimensional 
rendering because translation, rotation, and scaling can all 
be performed by matrix multiplication.   

Single Particle Simulation 
In single-particle simulations we propagate the phase 

space coordinates z of the particle.  Each beamline 

element n is obligated to provide a transfer map Mn 
(embodied by the PhaseMap class) that represents the 
action of the element.  Note that the characteristics of this 
map typically depend upon the parameters of the beam 
being propagated.  In any case, the particle coordinates 
are propagated according to the transfer equation 

zn+1= Mn(zn).   (2) 
Although provisions for high-order dynamics are included 
in the PhaseMap class, currently most of the beamline 
elements simply provide a transfer matrix to represent its 
dynamics.  This transfer matrix Mn∈ℜ 7×7 is just the linear 
part of Mn, or Mn=∂Mn/∂z and we have 

nn1n zMz =+ .   (3) 

Note that because we employ homogeneous coordinates it 
is still possible to perform translations, such as those 
produced by steering magnets, using a transfer matrix.  
Such matrices have the form 
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where ∆x, ∆x’, ∆y, … are the translations along the 
respective coordinate axes.  This fact is especially useful 
when performing rms envelope simulations where only 
the linear part of the transfer map is used. 

RMS Envelope Simulation 
For rms envelope simulations we propagate the 

(homogeneous) correlation matrix σ∈ℜ 7×7 defined by 
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where 〈⋅〉 is the phase space moment operator with respect 
to the beam distribution.  Substituting Eq. (3) into the 
above then unwinding the definitions forms the state 
transfer equation for rms envelopes 

TT
nnnnnnn1n MσMzMzMσ ==+ ))(( . (6) 

Note that these operations do not commute for the full 
transfer map Mn.  Thus, to account for space charge we 
must linearize the self electric fields of the beam.  To this 
end we employ a weighted linear regression of the true 
fields.  Considering the x-plane, we proceed by assuming 
a self electric field Ex of the form 

xaaEx 10 +≈ .   (7) 
___________________________________________  
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Weighting the regression with the beam distribution itself 
yields the following approximation: 
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(the moment 〈Ex〉 is zero by Newton’s third law).  For 
beams with ellipsoidal symmetry, that is, having 
distributions f(z) of the form  

( )zσzz 1)( −= Tff ,   (9) 

the moment 〈xEx〉 can be computed analytically in terms 
of elliptic integrals whose arguments are elements of the 
matrix σ.  These expressions can be found in the literature 
[1].  Note that Eq. (8) will yield a transfer matrix form for 
space charge effects that may be applied in the same 
fashion as Eq. (6). 

Ensemble Simulations 
The state E of a particle ensemble is represented as a 

collection of phase space coordinates 

{ }EzE I∈×ℜ∈= αα |}1{6 ,  (10) 
where IE is an index set.  The transfer equation for this 
state object is 

En+1= Mn(En )≡{Mn(zα)|α∈ IEn}.  (11) 
Although this state can be represented as a point in the 

Cartesian product of phase spaces (ℜ 6×{1})N where 
N=|E|, it is more constructive to think of it as a set with 
collective properties.  This process is most easily captured 
as a software object, which we have done with a class 
Ensemble.  Ensemble objects are responsible for 
calculating self-fields and other collective properties.  
There are many ways to compute these fields, including 
grids, finite elements, and direct summation.  These 
computation techniques are currently under development.  
We point out that the software is so designed such that 
specific self-field calculations may be swapped at run 
time.  Once the self electric fields are computed, the 
ensemble state can be advanced according to the 
equations of motions.  Considering the x phase plane, we 
have the approximation 
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where the relativistic factor γ accounts for the collective 
magnetic fields and ∆t is the time step.  From the above 
we infer 
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where m is the particle mass and β is the synchronous 
velocity normalized to the speed of light c, and ∆s is the 
distance traveled along the design trajectory during ∆t. 

SOFTWARE ARCHITECTURE 
We are able to support the various particle beam 

simulation techniques due to a novel approach in software 
architecture.  By employing a variant of the 
Element/Algorithm/Probe design pattern introduced by 

Malitsky and Talman [3], we separate the machine 
representation from the beam representation and the 
dynamics calculations.  In this scheme, systems for 
representing the accelerator, the beam, and the beam 
dynamics are decomposed into separate software 
components that communicate through the well-defined 

software interfaces IElement, IProbe, and IAlgorithm, 
respectively. 

Machine Representation 
A major effort in accelerator simulation is simply 

representing the machine.  By decoupling the machine 
representation from the machine’s action on the beam, the 
representation then can be used to support any number of 
simulation techniques.  Figure 1 is a UML structure 
diagram outlining the machine representation component 
of the simulator.  At the heart of this component is the 
IElement interface, which is exposed by any object 
representing a modeling element of the machine.  Note 
that we provide the (abstract) implementation class, 
Element, which provides a variety of common functions 
that modeling element must accommodate in support of 
the IElement interface.  Most objects representing 
beamline elements are derived from this convenience base 
class.  In the figure we see derived classes must provide 
energy gains and transfer maps specific to the modeling 
element, done by implementing the abstract methods 
energyGain() and transferMap(). 

Shown in Figure 1 is the aggregation ElementSeq, 
which is an ordered sequence of IElement objects.  It, too, 
exposes the IElement interface, since it may be 
considered a composite modeling element.  The values 
obtained here, however, would be the aggregate results of 
all members in the sequence.  We also see that the 
Lattice object is just a specialized sequence.  Much of 
the Lattice class function is conceptual, however, it also 
provides access to the important mechanisms of probe 
propagation and online synchronization.  Through the 
method propagate() the Lattice object coordinates the 
operation of the machine representation, beam 
representation, and beam dynamics.  The online 
synchronization mechanism, which automatically 
synchronizes the Lattice object to the parameters of the 
operating hardware, is accessed via the method resync(). 

Figure 1: machine representation component 
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Beam Representation 
Figure 2 depicts the basic architecture of the beam 

representation component.  The interface to this 
component is called IProbe, as seen in the figure.  Note 
that the interface for the dynamics subsystem, 
IAlgorithm, is associated with IProbe.  Thus, each probe 
object, representing some aspect of a charged particle 
beam, also specifies its own dynamics.  There may be 
several types of dynamics calculations available for any 
particular probe (e.g., linear, third-order, etc.).  

In Figure 2 we see that the (abstract) implementation 
class Probe is provided to assist in the implementation of 
particular probes.  It provides necessary bookkeeping as 
well as access to trajectory objects (not shown), which 
store probe histories along the lattice.  The maintenance 
of actual probe states is left to the particular probe 
implementation.  In the figure we see that the state of a 
ParticleProbe is the vector of particle phase space 
coordinates, the state of an EnvelopeProbe is the 
correlation matrix of moments up to second order, and the 
state of an EnsembleProbe is an ensemble object. 

Machine Synchronization 
Synchronization with the operating hardware is 

accomplished through a subsystem based on the (abstract) 
association class Synchronization.  It supports 
communication between the XAL model system and the 
XAL SMF (Standard Machine Format) system, which 
otherwise have no knowledge of one another.   

Shown in Figure 3, these synchronization objects 
understand the vernacular of both XAL subsystems.  The 
children of the AcceleratorNode class, belonging to 
SMF, represent actual accelerator components and 
supports communication with these devices.  The 
interfaces derived from IElement represent modeling 
elements.  Note that is a one/none-to-many association 
between accelerator devices and their modeling 
counterparts.  This condition is necessary because, for 
example, “drifts” are not controllable devices of the 
accelerator and actual devices may require several 
modeling elements to represent (e.g., quadrupoles with 
trim windings for steering, etc.).  Referring to the figure 
we see that each type of accelerator device requires the 
implementation of a particular synchronization class that 
understands how to communicate with both the device 
and the modeling element.  Once implemented, any 
synchronization request is carried out by invoking the 
abstract method resync() in the base class.  Thus, to 
remain synchronized with the operating machine the 
Lattice object maintains a set of synchronization objects, 
invoking resync() on each whenever required. 

VERIFICATION 
To verify the operation of the XAL modeling 

subsystem we have compared the results for single 
particle and envelope simulations against those of 
Trace3D.  Figure 4 shows such a comparison for a 
simulation of the SNS Medium Energy Transport 
(MEBT) system.  The figure plots the Twiss parameter 
beta in the (horizontal) transverse plane computed by each 
code. There we can see that the results are essentially 
equivalent. 
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Figure 2: architecture of beam representation component 
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Figure 4: transverse beta simulations of the SNS MEBT  

Figure 3: synchronization mechanism 
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