
A MODULAR ON-LINE SIMULATOR FOR MODEL REFERENCE
CONTROL OF CHARGED PARTICLE BEAMS*

C.K. Allen#, C.A. McChesney, LANL, Los Alamos, NM, USA
N.D. Pattengale, Sandia National Laboratory, Albuquerque, NM, USA

C.P. Chu, J.D. Galambos, W.-D. Klotz, T.A. Pelaia, A. Shishlo, ORNL, Oak Ridge, TN, USA

Abstract
We have implemented a particle beam simulation

engine based on modern software engineering principles
with intent that it be a convenient model reference for
high-level control applications. The simulator is an
autonomous subsystem of the high-level application
framework XAL currently under development for the
Spallation Neutron Source (SNS). It supports multiple
simulation techniques (i.e., single particle, multi-particle,
envelope, etc.), automatically synchronizes with operating
accelerator hardware, and also supports off-line design
studies. Moreover, since it is implemented using modern
techniques in the Java language, it is portable across
operating platforms, is maintainable, and upgradeable.

INTRODUCTION

To support the operation of the SNS accelerator we

have built a development framework for high-level
control applications called XAL (for a description of XAL
see [2]). The framework includes a simulation engine that
we call the XAL model subsystem. This subsystem
works in conjunction with the application framework, or
as a stand-alone particle beam simulator. XAL contains a
utility for automatically generating modeling lattices and
synchronizing them with the operating machine. Here we
outline the architecture of the model subsystem and the
mathematical models upon which it is based.

DYNAMICS
In all simulations we parameterize phase space using

homogeneous coordinates in ℜ 6×{1}. Letting z denote a
point in phase space it has the representation

()Tzzyyxx 1′′′≡z (1)

where the prime indicates differentiation with respect to
the design path length parameter s. Note that we use (z,z’)
as the longitudinal phase coordinates rather than (z,∆p/p).
Mathematicians typically use homogeneous coordinates to
parameterize the real projective spaces ℜ Pn; they are also
widely used in computer graphics for three-dimensional
rendering because translation, rotation, and scaling can all
be performed by matrix multiplication.

Single Particle Simulation
In single-particle simulations we propagate the phase

space coordinates z of the particle. Each beamline

element n is obligated to provide a transfer map Mn
(embodied by the PhaseMap class) that represents the
action of the element. Note that the characteristics of this
map typically depend upon the parameters of the beam
being propagated. In any case, the particle coordinates
are propagated according to the transfer equation

zn+1= Mn(zn). (2)
Although provisions for high-order dynamics are included
in the PhaseMap class, currently most of the beamline
elements simply provide a transfer matrix to represent its
dynamics. This transfer matrix Mn∈ℜ 7×7 is just the linear
part of Mn, or Mn=∂Mn/∂z and we have

nn1n zMz =+ . (3)

Note that because we employ homogeneous coordinates it
is still possible to perform translations, such as those
produced by steering magnets, using a transfer matrix.
Such matrices have the form

′∆

∆

= ′′′

′

100 L

MOM

L

xmm

xmm

xxxx

xxxx

nM , (4)

where ∆x, ∆x’, ∆y, … are the translations along the
respective coordinate axes. This fact is especially useful
when performing rms envelope simulations where only
the linear part of the transfer map is used.

RMS Envelope Simulation
For rms envelope simulations we propagate the

(homogeneous) correlation matrix σ∈ℜ 7×7 defined by

′

′′′

′

=≡

1

2

2

L

MOM

L

xx

xxxx

xxxx

Tzzσ (5)

where 〈⋅〉 is the phase space moment operator with respect
to the beam distribution. Substituting Eq. (3) into the
above then unwinding the definitions forms the state
transfer equation for rms envelopes

TT
nnnnnnn1n MσMzMzMσ ==+))((. (6)

Note that these operations do not commute for the full
transfer map Mn. Thus, to account for space charge we
must linearize the self electric fields of the beam. To this
end we employ a weighted linear regression of the true
fields. Considering the x-plane, we proceed by assuming
a self electric field Ex of the form

xaaEx 10 +≈ . (7)

* Work supported by the US Department of Energy
ckallen@lanl.gov

0-7803-7739-9 ©2003 IEEE 3527

Proceedings of the 2003 Particle Accelerator Conference

Weighting the regression with the beam distribution itself
yields the following approximation:

()xx
x

xE
E x

x −≈
2

, (8)

(the moment 〈Ex〉 is zero by Newton’s third law). For
beams with ellipsoidal symmetry, that is, having
distributions f(z) of the form

()zσzz 1)(−= Tff , (9)

the moment 〈xEx〉 can be computed analytically in terms
of elliptic integrals whose arguments are elements of the
matrix σ. These expressions can be found in the literature
[1]. Note that Eq. (8) will yield a transfer matrix form for
space charge effects that may be applied in the same
fashion as Eq. (6).

Ensemble Simulations
The state E of a particle ensemble is represented as a

collection of phase space coordinates

{ }EzE I∈×ℜ∈= αα |}1{6 , (10)
where IE is an index set. The transfer equation for this
state object is

En+1= Mn(En)≡{Mn(zα)|α∈ IEn}. (11)
Although this state can be represented as a point in the

Cartesian product of phase spaces (ℜ 6×{1})N where
N=|E|, it is more constructive to think of it as a set with
collective properties. This process is most easily captured
as a software object, which we have done with a class
Ensemble. Ensemble objects are responsible for
calculating self-fields and other collective properties.
There are many ways to compute these fields, including
grids, finite elements, and direct summation. These
computation techniques are currently under development.
We point out that the software is so designed such that
specific self-field calculations may be swapped at run
time. Once the self electric fields are computed, the
ensemble state can be advanced according to the
equations of motions. Considering the x phase plane, we
have the approximation

tE
q

p xx ∆≈∆
2γ

, (12)

where the relativistic factor γ accounts for the collective
magnetic fields and ∆t is the time step. From the above
we infer

s
c

E
q

mcp

p
x x

x ∆≈
∆

=′∆
βγβγ
11

2
, (13)

where m is the particle mass and β is the synchronous
velocity normalized to the speed of light c, and ∆s is the
distance traveled along the design trajectory during ∆t.

SOFTWARE ARCHITECTURE
We are able to support the various particle beam

simulation techniques due to a novel approach in software
architecture. By employing a variant of the
Element/Algorithm/Probe design pattern introduced by

Malitsky and Talman [3], we separate the machine
representation from the beam representation and the
dynamics calculations. In this scheme, systems for
representing the accelerator, the beam, and the beam
dynamics are decomposed into separate software
components that communicate through the well-defined

software interfaces IElement, IProbe, and IAlgorithm,
respectively.

Machine Representation
A major effort in accelerator simulation is simply

representing the machine. By decoupling the machine
representation from the machine’s action on the beam, the
representation then can be used to support any number of
simulation techniques. Figure 1 is a UML structure
diagram outlining the machine representation component
of the simulator. At the heart of this component is the
IElement interface, which is exposed by any object
representing a modeling element of the machine. Note
that we provide the (abstract) implementation class,
Element, which provides a variety of common functions
that modeling element must accommodate in support of
the IElement interface. Most objects representing
beamline elements are derived from this convenience base
class. In the figure we see derived classes must provide
energy gains and transfer maps specific to the modeling
element, done by implementing the abstract methods
energyGain() and transferMap().

Shown in Figure 1 is the aggregation ElementSeq,
which is an ordered sequence of IElement objects. It, too,
exposes the IElement interface, since it may be
considered a composite modeling element. The values
obtained here, however, would be the aggregate results of
all members in the sequence. We also see that the
Lattice object is just a specialized sequence. Much of
the Lattice class function is conceptual, however, it also
provides access to the important mechanisms of probe
propagation and online synchronization. Through the
method propagate() the Lattice object coordinates the
operation of the machine representation, beam
representation, and beam dynamics. The online
synchronization mechanism, which automatically
synchronizes the Lattice object to the parameters of the
operating hardware, is accessed via the method resync().

Figure 1: machine representation component

3528

Proceedings of the 2003 Particle Accelerator Conference

Beam Representation
Figure 2 depicts the basic architecture of the beam

representation component. The interface to this
component is called IProbe, as seen in the figure. Note
that the interface for the dynamics subsystem,
IAlgorithm, is associated with IProbe. Thus, each probe
object, representing some aspect of a charged particle
beam, also specifies its own dynamics. There may be
several types of dynamics calculations available for any
particular probe (e.g., linear, third-order, etc.).

In Figure 2 we see that the (abstract) implementation
class Probe is provided to assist in the implementation of
particular probes. It provides necessary bookkeeping as
well as access to trajectory objects (not shown), which
store probe histories along the lattice. The maintenance
of actual probe states is left to the particular probe
implementation. In the figure we see that the state of a
ParticleProbe is the vector of particle phase space
coordinates, the state of an EnvelopeProbe is the
correlation matrix of moments up to second order, and the
state of an EnsembleProbe is an ensemble object.

Machine Synchronization
Synchronization with the operating hardware is

accomplished through a subsystem based on the (abstract)
association class Synchronization. It supports
communication between the XAL model system and the
XAL SMF (Standard Machine Format) system, which
otherwise have no knowledge of one another.

Shown in Figure 3, these synchronization objects
understand the vernacular of both XAL subsystems. The
children of the AcceleratorNode class, belonging to
SMF, represent actual accelerator components and
supports communication with these devices. The
interfaces derived from IElement represent modeling
elements. Note that is a one/none-to-many association
between accelerator devices and their modeling
counterparts. This condition is necessary because, for
example, “drifts” are not controllable devices of the
accelerator and actual devices may require several
modeling elements to represent (e.g., quadrupoles with
trim windings for steering, etc.). Referring to the figure
we see that each type of accelerator device requires the
implementation of a particular synchronization class that
understands how to communicate with both the device
and the modeling element. Once implemented, any
synchronization request is carried out by invoking the
abstract method resync() in the base class. Thus, to
remain synchronized with the operating machine the
Lattice object maintains a set of synchronization objects,
invoking resync() on each whenever required.

VERIFICATION
To verify the operation of the XAL modeling

subsystem we have compared the results for single
particle and envelope simulations against those of
Trace3D. Figure 4 shows such a comparison for a
simulation of the SNS Medium Energy Transport
(MEBT) system. The figure plots the Twiss parameter
beta in the (horizontal) transverse plane computed by each
code. There we can see that the results are essentially
equivalent.

REFERENCES
[1] C.K. Allen and N.D. Pattengale, LANL Internal

Report LA-UR-02-4979.
[2] C.M. Chu, et. al., “Applications Programming

Structure and Physics Applications”, these
proceedings.

[3] N. Malitsky and R. Talman, “The Framework of
Unified Accelerator Libraries”, ICAP 1998.

Figure 2: architecture of beam representation component

0

2.5

5

7.5

0 0.5 1 1.5 2 2.5 3 3.5 4
s (m)

β
(m

/r
ad

)
Trace3D

XAL

Figure 4: transverse beta simulations of the SNS MEBT

Figure 3: synchronization mechanism

3529

Proceedings of the 2003 Particle Accelerator Conference

