Machining process for disk damped cell taking the example of TD18 #2, #3

091127 T. Takatomi and T. Higo

Process (1)

- Cut bar of ϕ 82mm
- Rough machining
 - Turn disk side
 - Turn cup side
 - Machining center tuning hole
 - Machining center damping waveguide
- Medium finish
 - 0.1mm undercut with chucking
- Annealing
 - 500C, 2hr
- Make reference flat plane in disk side
 - Turning , undercut 0.01~0.015

Process (2)

- Finish tuning hole and inscribe numbering
- Milling damping waveguide
 - Carbide tool
 - Care should be taken to smoothly connect to turned surface
- Final turning of disk side
 - With Seibu-denki, second grade machine
 - Disk side diamond turning with vacuum chuck
 - Cup side diamond turning with vacuum chuck
- Measurement
 - Interferometer, CMM, etc.
- Shipping

TD18 #3 01D

Good

091127: We accepted this typical type, because it can be pushed to flat, to some extent, before the diffusion bonding process.

14A

Acceptable, though strange deformation shape

091127: We accepted even this type, because it can be pushed to flat, but not so confident due to the strange pattern.

Semi-final data on flatness of TD18

	TD18_V	G2.4_Disk #2			TD18_VG	_VG2.4_Disk #3	
Cell Name		flatr	ness	Cell Name	Cell No	flatness	
	Gell No.	cup side	disk side			cup side	disk side
COUPLER COVER	CP-C-A			COUPLER COVER	CP-C-C		
COUPLER BODY	CP-B-A				CP-B-C	0.057	0.405
INPUT-RING	IN-R-A	1.035	0.831		IN-R-B	0.857	0.495
INPUT-MATCH-IRIS	IN-M-B	0.628	0.788			1.004	1.265
STANDARD CELL 01	01-C	1.658	1.941	STANDARD CELL 02	02-B	1.014	1 532
STANDARD CELL 02	02-A	0 472	0.674	STANDARD CELL 03	03-A	1.16	1.313
STANDARD CELL 03	03-B	1 186	13	STANDARD CELL 04	4-A	2.113	1.771
STANDARD CELL 04	4-R	1 435	1 478	STANDARD CELL 05	5-A	0.66	0.815
STANDARD CELL 01	5-B	1.100	1.636	STANDARD CELL 06	6-A	1.237	1.604
	6-B	1 1 9 9	1 1 1 /	STANDARD CELL 07	7-A	0.773	1.042
	0 D	2 5 7 8	2.465	STANDARD CELL 08	8-A	0.784	0.954
		2.376	2.403	STANDARD CELL 09	9-A	0.758	0.711
	0-D	2.001	0.903	STANDARD CELL 10	10-A	2.572	1.598
STANDARD CELL 09	9-B	3.091	2.420	STANDARD CELL 11	11-A	0.863	0.768
STANDARD GELL 10	10-B	0.869	1.044				
STANDARD GELL 11	11-B	1.047	0.728	STANDARD CELL 12	12-A	2.061	1.597
STANDARD GELL 12	12-B	2.376	1.453	STANDARD CELL 13	13-A	1 482	1 55
STANDARD CELL 13	13-B	2.351	1.123	STANDARD CELL 14	14-A	1.502	1.401
STANDARD CELL 14	14-B	1.973	1.529				
STANDARD CELL 15	15-B	2.167	1.335	STANDARD CELL 15	15-A	1.644	1.697
STANDARD CELL 16	16-B	1.755	2.295	STANDADD CELL 16	16-1	2.950	2 506
STANDARD CELL 17	17-B	2.419	1.612	STANDARD CELL 18	10-A	2.809	3.506
STANDARD CELL 18	18-B	2.858	3.242	STANDARD CELL 17	17-A	2.489	2.184
STANDARD CELL 19	19-C	1.15	1.107	STANDARD CELL 18	18-AC	2.332	2.001
STANDARD CELL 20	20-B	1.108	0.674	STANDARD CELL 19	19-DE	2.049	1.68
OUTPUT-RING	OUT-R-B	0.255	0.578	STANDARD CELL 20	20-A	0.806	0.831
COUPLER BODY	CP-B-B				OUI-R-A	0.575	0.645
COUPLER COVER	CP-C-B				CD-C-D		
				COUPLER COVER	0P-0-D		
			Add	ditional 2um	赤は2ミクロンずつ追加工		
	2ミクロンずつ追加工	← ──			>		
			cut	was required.			

Some of these were bad and KEK asked o re-make them from the beginning.

Roughness

- We did not pay much attention to roughness.
- One of the reason is that there is milled surface, which is usually much worse than turning.
- We should have the roughness of both area in mind.

TD18 roughness of turned surface

Diamond turned surface, but not with a top-class lathe.

TD18 roughness of milled surface

Roughness of wall shaped by milling cannot be measured without cutting.