### **KEK** status

May 29, 2009 T. Higo and K. Ueno

# **Fabrication status**

- Quadrant
  - Tuning done, final assembly
  - Chamber vac leakage get solved, now under baking of the chamber
- C10, CD10
  - Set as the first trial for K-project with under collaboration framework between KEK and Tokoku univ.
  - Need to quickly finalize the design
  - Proceed more with US-Japan budget
- T24, TD24
  - Will start design / fab process in a few months
  - Proceed with CERN budget support and SLAC assembly support

### Quad#5 tuning summary

#### 090520 T. Higo, K. Yokoyama and Z. Jingru

### **Tuning setup**



Tuning setup: Quad#5, bead string, linear stage driven by pulse motor, input divider, network analyzer

Quad assembly configuration seen from input side

# Tuning ball pushed by a rod



4mm stainless ball pushed by minus watch driver. Pushing by turning with Higo's hand full force. Elastic deformation kept, meaning that the tuning pins are kept pushing the balls.

# **Tuning history**

- 090202 S<sub>11</sub> measured before tuning
- BP14@11422 initial stage
- BP20@11420 after tune up half of the cells
  Flatten the Sim pattern, especially 9~16 area
- BP-28@11420 after fine tuning
- BP32@11420 after input match tune-2

### Tuning in practice



### **Tuning in practice**

Raw amplitude of bead pull measurement

bead pull # 14-20-28-32



### Evolution of S11 near 11420MHz



090520

090202 initial 090519 after cell tuning, BP-30 090519

after input match tuning

### Input matching after tuning



 $|S_{11}| = -32$ dB at 11422MHz, -35dB at 11420MHz Operation at 11422MHz at 30C in vacuum is planned. 22C in air  $\rightarrow$  30C VAC makes 2MHz higher frequency. So the input match should be -35dB, good enough.

# Near future processes

- Finish tuning (done)
- Rinsing with acetone (done)
- Final assembly
- Check RF
- Install in vac chamber
- Install to Nextef
- High gradient test at 11422MHz at 30C

### Quadrant chamber evacuation.

CCG, FRG, Between TMP [Pa]



Nothing inside. ~50liter/s TMP directly attached.

P = 1~2 x 10^-5Pa Better vacuum level is required! Should make baking? Structures etc. should be integrated to realize the vacuum level.

SLAC level ~ ???

# High gradient test status

- Nextef
  - T18 test in its final stage
  - Preparing to install quad #5 in mid June
- Narrow waveguide test at KT-1
  - acquiring more data points in breakdown rate measurement
- C-band high power test
  - Keep going as scheduled
  - Will finish structure test by early July
  - Should start preparing to use for pulse compression test
- Should discuss on how to configure the X-band test
- Preparing a review of X-band activity in Jul.-Aug. for Oide

# Some typical pages from T18\_VG2.4\_Disk\_#2 processing (13)

Dark current as of 090515 Breakdown rate evaluation at 412nsec Final work listup

#### 090526

T. Higo, S. Matsumoto and Nextef group

### Dark current evolution 252nsec

# Dark Current evolution 090224-090414-090515



Eacc [MV/m]

No reduction of dark current in 700 hrs running at >100MV/m level from 090225 (RF on ~2200hr) to 090414 (RF on ~2900hr)

Neither for ?? Hours from 090414 to 090515

FC microA

### Dark current measurement 090414



### Field enhancement factor as of 090515



Dark Current of T18\_VG2.4\_Disk #2 on 090515

Following the formula and parameters of the following page

#### Deduction of the field enhancement factor



### 090515 Width dependence



#### Breakdown rate at 252ns and 412ns

BDR\_252ns&412ns



![](_page_20_Figure_0.jpeg)

# Summary and last plan until installation quadrant

- Width dependence is linear.
- Breakdown rate was measured at 252ns and 412ns. In summary;
  - BDR vs Eacc at 252ns, 412ns
  - BRD vs. width at 104.4 MV/m
  - Final data taking at 412ns, low power points
    - 50MW for ~2 days and 45MW for a week
- Additional check and measurement items are listed in the following page. ~ 1 week

# Items of checking / confirmation / developments (1)

- Measure dark current spectrum (0.5d~)
  - Check missing 3MeV peak
  - Automation?
- Check waveguide system (0.5d)
  - Big waveguide loss by varying temperature
  - Identify breakdown locations at longer pulse with acoustic sensor, etc
- System power final calibration for future use (1d)
  - KLY(S+N)\_Comb\_out as a reference
  - Measure monitor power, TDS, DPO at ACC-IN and Rs
    - versus power level and pulse width
  - In quad test, this new ACC-IN becomes the refernece!!
- Trial of reflection phase meas. with IQ-demodulator (2d)
  - with carrying RF signal directly to control room for ACC-IN and Rs
  - and dividing into two, one for phase and one for amplitude

# Items of checking / confirmation / developments (2)

- Pursue to find FC-UP origin
  - how??
- Develop data recording into xylion (a few days)
  - DPO, TDS and relevant parameters
  - In every second?, all INTLK, 3pulses?.....