[12P-24]

DEVELOPMENTS AND HIGH-POWER TESTS OF THE 324MHz PULSE KLYSTRONS

M.Kawamura, S.Fukuda, Z.Fang, S.Yamaguchi, C.Kubota, S.Anami, S.Miyake^{*)}, K.Hayashi^{*)}, M.Sakamoto^{*)} and K.Tetsuka^{*)}

KEK, 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305-0801, JAPAN

*)Toshiba Corporation, Display Devices and Components Company, 1385, Shimoishigami, Ohtawara-shi, Tochigi-ken, 324-8550, JAPAN

Abstract

In the low energy section (less than 200 MeV) of the linac for the High-Intensity Proton Accelerator Project, the pulse klystrons, whose frequencies are 324MHz, will be used as rf sources. After having developed the prototypes of rf-windows and a beam-test-tube, proto-type klystrons were developed. The high-power tests of these klystrons have been performed. At the same time some components (like a modulator, waveguides and so on) have also been developed and tested. In this paper the present status of the klystrons and the components, including the test results, are described.

324MHzパルスクライストロンの開発と大電力試験

1.はじめに

大強度陽子加速器計画[1]用リニアックのうち、2 00MeVまでの低エネルギー部用高周波源には周 波数324MHzのモデュレーティング・アノード (M・アノード)型パルスクライストロンが採用され る[2][3]。この計画のために、高周波窓[4][5]、ビー ムテスト管[6]の開発を経て、クライストロンの実機 の開発が行われ、大電力試験が進行中である。同時に KEKではM・アノードパルス変調器[6][7]や導波 管など各要素の開発を行い、テストスタンドで使用 している。本報告では、クライストロンや各要素の概 要を述べ、大電力試験の結果を含めたクライストロン 開発の現状を報告する。

2.324MHzパルスクライストロンの概 要

クライストロンの仕様を表1[4]に、外形写真を図 1に示す。大強度陽子加速器計画では20台使用する [1]。設計時には、ビーム・シミュレーション・コー ドとしてEGUNおよびARSENALを使用し、高周波窓の 設計にはHFSSを使用した。実機製作には高周波窓お

表1.クライストロンの仕様[4]

項目	単位	定格 動作時
		(飽和状態)
周波数	ΜΗz	324
ピーク出力電力	MW	3.0 2.5
ビームパルス幅	μs	700
R F パルス幅	μs	650
同(フラットトップ)	μs	620
繰返し	pps	50
RFデューティ	%	3.25
カソード電流	А	50 45
カソード電圧	k V	110 102
M・アノード電圧	k V	93 86
パービアンス		1.37×10 ⁻⁶
効率	%	55
利得	d B	50
空洞数		5
入 / 出力結栓		N型/
		WR - 2300
RF窓		同軸セラミック窓
据付方向		水平方向
ビーム集束		電磁石

図1.324MHzパルスクライストロン

よび電子銃のプロトタイプの試作、試験結果を反映 させているが、高周波窓の同軸モードから矩形導波 管モードへの変換部にはプロトタイプのdoor knob 方式[4][5]ではなくT-bar[8]方式が採用され、Tbar部の冷却には水冷・空冷いずれも使用出来るよう になっている。

クライストロンとしては周波数324MHz、自 由空間での波長約926mmというこれまでに無い 低周波、長波長のものであり、全長(約5m)および 重量(約3t)は真空炉、クレーンなどの既存設備の 性能限界に達している。その上でドリフト径やコレ クタの寸法、集束コイルの構成などを最適化して最 大定格出力(ピーク電力3MW、平均電力97.5k W)まで安定で、制御可能なRF電力を供給すること は大きな挑戦となっている。

3.各種構成要素の概要

3 - 1 . M・アノードパルス変調器[6][7]

M・アノードパルス変調器の仕様を表2に示す。1 クライストロン当たり1台必要であるため、大強度 陽子加速器計画では20台使用する。現在クライス トロン試験用にはプロトタイプとして製造した変調 器が使用され、約1年2ヶ月運転が行われている。現 在KEKでは60MeVまでの陽子リニアックを建 設中であるが、そのために当変調器は新たに6台製 造・納品されており、秋以降の試験・運転を控えてい る状況である。また、当変調器はスイッチング素子と して四極管(Thomson,TH5188)を使用しているが、 KEKでは半導体の方が長寿命であることに着目し、 パルス電子(株)とともにスイッチング素子の半導体 化に取り組み、試作機を開発した[9]。今までの試運 転では支障無い状態である。

当変調器には運転状況を把握するため各種の電圧・

表2.M・アノードパルス変調器の仕様[2][3]

項目	定格	
Kly.アノード	~ 8 5 k V	
電圧	(カソード電圧100kV時)	
	~ 9 3 k V	
	(カソード電圧110kV時)	
抵抗デバイダ回路	1 A	
電流		
Кlу.アノード	100mA以下	
電流		
立上り時間	5 0 µ s 以下(1 0 - 9 0 %)	
立下り時間	150µs以下(90-10%)	
スイッチング素子	T H 5 1 8 8 (Thomson)	
КІУ.	- 2 , 2 . 5 , 3 k V	
逆バイアス電圧	(対力ソード電圧)	
Kly.ヒータ	~ A C 3 0 0 W	
入力電力		
Кlу.カソード	1 4	
シリーズ抵抗		

電流モニタが備えてあるが、最近クライストロンの エージングにおいて、M・アノード電流のモニタが有 効となることがわかってきた。このモニタはM・ア ノード電流を検出し光変換して出力されるものであ る。M・アノード電流/出力信号=100mA/2V に変換され、オシロスコープにより1mA以下まで 観測できる。クライストロンのエージング中にパル スOFF時のこの波形を観測すると、クライストロ ンを含むシステムのエージングが不十分な時には不 定期に5mA程度の電流が流れており、エージング によってそれが減少するのが確かめられた。

3-2 高電圧同軸ケーブルとケーブルソケット

M・アノードパルス変調器からクライストロンへ は、同軸ケーブルにRG-220/Uを、ケーブルソケット には Isolation Products, Inc. 製のD-117-BAを用 い、「ヒータ」「ヒータ・カソード」「M・アノード」の 合計3電極に電力を供給している。D-117-BAはケー ブル挿入部を絶縁油で浸し真空脱泡する構造になっ ているが、絶縁油にオイルタンクなどで使用される 電気絶縁油を用いるとケーブルのポリエチレンが膨 張して再度の挿入/抜出が困難になり、シリコン油 (1社推奨)の使用が必須となった。

また、最近「M・アノード」電極をつなぐケーブル でコロナ放電が起こり、耐圧不良になることが確認 された。ケーブルの作成については現在経験を積ん でいるところであるが、ケーブルの寿命等について 実験によるデータの蓄積が必要である。

3-3.高周波伝送系等

クライストロン試験のための高周波伝送系には、 WR-2300の各種部品が用いられている。今年 2月までの試験で用いられたものには方向性結合器 [8]、3スタブ移相器[3]、T分岐[8]、同軸導波管変 換器、ダミーロードなどがある。ここでは3スタブ移 相器について略述する。スタブ挿入長最大250m mまで可変であり、周波数324MHz±1MHz、 VSWR1.1以下、挿入損失0.05以下、耐ピー ク電力1.5MWで、移相量は±30°である。この 3スタブ移相器はクライストロン試験において出力 空洞の負荷調整に用いられた。

現在の伝送系には、DTLホットモデルのテスト も考慮し、上記部品の他にサーキュレータ[3]や2分 配器[3]も用いられているが詳細は省略する。

最後に、クライストロンドライブアンプには日本 高周波(株)製のものを用いている。これはメインア ンプにミニサーキット社製のLZY-1を2台用い て、出力合成でCWで50Wの出力が得られるもの である。

4.クライストロンの開発状況と大電力試験 の現状

試作1号機ではカソード電圧の低い範囲(66~ 75kV)と高い範囲(95~110kV)で最大1 0kW、周波数324±1.5MHzの発振が見られ た。これらはコレクタに永久磁石を取り付け、横磁場 を与えることで完全に抑制することが出来た。上記 のようにして発振を抑えた状態でRF増幅を行うと、 「フラット・トップ(FT)部に0.2~0.62M Hzの高周波(寄生)振動が乗る」、「FT部がステッ プ(斜め)状になり、324MHzを中心に非対象の スペクトラムを持つ」など出力の不安定性が見られ た。これらは入/出力空洞にスタブ移相器を接続し て負荷調整すること等で抑制出来ることが確かめら れた。なお、RF出力は2.5MW(パルス幅300 µs),2.3MW(パルス幅600µs)まで測定 された.

上記のテストから、不安定の原因はコレクタから の戻り電子によるものと結論された[10]。この戻り 電子はコレクタの形状(ドリフト管径とコレクタ内 径との比、コレクタ長、等)に強く依存する事から、 大きいコレクタ形状のクライストロン(1A号機)の テストも行った。

1 A 号機ではカソード電圧99k V以降で発振が 見られたが、1 号機と比較して、戻り電子を要因とす る発振現象を改善出来ることが確かめられた。R F 増幅については入出力特性曲線の未飽和部が滑らか に上昇しない、という現象が見られたが、この原因の 1つとして、カソード電流の不定期な変動が影響して いることがわかった。

1号機、1A号機の結果を踏まえて2号機が製造 され、現在大電力試験中である。

5.まとめ

324MHzパルスクライストロンおよび各種構 成要素の概要と、クライストロンの開発状況をまと め、これまでの成果と問題点を述べてきた。今年度行 われる予定のRFQ空洞を用いたビーム加速試験に 向けて種々の試験、検討を行う予定である。

参考文献

[1] J A E R I・K E K 共同推進チーム、「大強度陽子加速 器計画」、KEK Report 99-5, JAERI-Tech 2000-003, JHF-99-4, 1999.

[2]" JHF Design Study Report ",JHF Project Office,KEK Report 97-16,JHF-97-10,1998.

[3]" The Second International Advisory Committee Meeting for JHF Accelerator", December7-9, 1998, KEK, Tsukuba, Japan.

[4]S.Fukuda et al.,Proc.of the First Asian Part.Acc. Conf.(1998),pp.112-114.

[5]M.Kawamura et al., Proc.of the 23th Linear Accelerator Meeting in Japan(1998), pp.246-248.

[6]M.Kawamura et al., Proc.of the 24th Linear Accelerator Meeting in Japan(1999), pp.200-202.

[7]M.Ono et al., Proc.of the 12th Symposium on Accelerator Science and Technology(1999), pp.275-277.

[8]Z.Fang et al., Proc.of the 24th Linear Accelerator Meeting in Japan(1999), pp.215-217.

[9]T.Nakamura et al., Proc. of this Meeting.

[10]Z.Fang et al., Proc.of this Meeting.