2MeV/u がん治療用入射テスト器

山本和男^{,A)}、服部俊幸^{A)}、岡村昌宏^{B)}、片山武司^{B)}、山田 ^{C)} 林崎規託^{A)}、柏木啓次^{A)}、高橋康之^{A)}、畑 寿起^{A)} 東京工業大学 原子炉工学研究所 〒152-8550東京都目黒区大岡山2-12-1 ^{B)} 理化学研究所 〒351-0198埼玉県和光市広沢2-1 ^{C)} 放射線医学総合研究所 〒263-8555千葉県千葉市稲毛区穴川4-9-1

概要

がん治療用入射器にAPF-IH型LINACの研究を行ってい る。今回、C4+イオンを40keV/uから2MeV/uまで加速する 入射テスト器を製作した。その加速空胴にたいして行っ たローパワーテストについて報告する。また、OPERA-3Dを用いた電磁場解析の結果を踏まえた単粒子軌道計算 プログラムについての現状を報告する。

1.はじめに

加速器によるがん治療装置は、放射線医学総合研究所 (HIMAC)を始め、現在では6つの施設が稼動、もしく は建設中である。より幅広く普及するためには加速器の 小型化が必須の条件であることはいうまでもない。とく に、加速器全体のデザインを見ても、入射器におけるそ れは建設費、運用費、建設スペースともに重要な要素の ひとつである。そこで、われわれは現在使用されている RFQ+Alvarezに変わるものとして、APF-IH型LINACの研 究を行っている。

IH型加速器はAlvarez型と同じドリフトチューブ型高周 波LINACであるが、場の発生方法によりπモード加速が 可能である。そのため、Alvarez型と比べ、高い周波数で 運転ができ、加速効率が高い。しかし、空胴内の粒子の 収束は、ドリフトチューブ内外に収束用レンズを挿入し て行うため、十分なスペースを確保するために運転周波 数をさげる必要が、また前段加速が必要となりIH型の利 点が生かせなかった。そこで、粒子の収束方法 に'Alternating Phase Focus'構造を取り入れた。APF構造と は、粒子の位置により受けるRF-defocusing力を利用した 収束方法である。同期位相が負の場合、位相安定性の原 理から縦方向は収束するが、横方向にはRF-defocusing力 により発散する。同期位相が正の場合、その効果は逆で ある。同期位相を正負交互にして粒子を収束する方法が APF構造である。

がん治療入射テスト器として、C4+イオンを40keV/uから2MeV/uまで加速する全長約1.3m、空胴径約0.6mの APF-IH型LINACを製作した。構造は作業性などを考え、 "三枚おろし"構造、上下タンクに挟まれた中間板にリッジとステム、そしてドリフトチューブを搭載した。この 出来上がった加速空胴を用いたローパワーテストを行ったので報告する。一方、IH型加速空胴のより深い理解へのアプローチとして、OPERA-3Dを用いた電磁場解析を 行っている。従来、IH型加速空胴内のドリフトチューブ やステムの多さ、また、リッジによる非対称性から空胴 共振周波数、ドリフトチューブ間に発生する電圧分布は、 モデルを製作して摂動法で測定するしか知りようがな かったが、コンピューターの進歩により解析が不可能で はなくなった。電磁場解析を行った結果、いままでは近 似で行ってきた粒子起動計算が3次元で行えるようになり、 いまそのプログラムを製作中である。

2.がん治療用入射テスト器

2.1 主要パラメーター

APF-IH型LINACによるがん治療入射テスト器として、 出射エネルギーはHIMAC入射器の1/3スケールの2MeV/u とし、加速粒子はがん治療に使われるC4+イオンを想定 して、対電荷質量比≧1/3とした。定電場分布を採用し、 キルパトリック放電限界の2倍にした。APFを有効に作用 させるような同期位相の繰り返しパターンを数値計算に より求めた。その結果を図1に示す。空胴共振周波数と電 圧分布は1/2モデルを作成し決定した(図2参照)。主な パラメーターを表1に示す。

図2 モデルによる電場分布測定

Acceleration Particle	$q/A \ge 1/3$
Input Energy	42 keV/u
Output Energy	2.0 MeV/u
Operation Frequency	102.7 MHz
Synchronous Phase	-30, -30, +30, +30
Number of Cell	22
Cavity Length	1280 mm
Diameter of Cavity	560 mm
Focusing Sequence	-30 , -30 ,+30 ,+30
Transverse Acceptance99.5 π mmmrad	
Longitudinal Acceptance	30°
Acceleration Voltage/Gap	120-560 kV

表1 2MeV/u APF-IH型LINACのパラメーター

2.2 製作とアライメント

入射テスト器は、作業性を考え、三枚おろし、構造とし、 上下タンクと中間板とを個別に製作、加工、銅メッキを 行った(図3参照)。ドリフトチューブのアライメントは、 ステムの同軸度を40µm以下の精度とし、ドリフト チューブ間の長さに相当するスペーサーをかませながら、 ドリフトチューブ内径14mmに対し、13.92mmのロッドを 通して行った。その結果、ドリフトチューブ間の長さの 誤差は±1.0%以内に収まった。上下タンクにより中間板 をはさみ、Heガスリークテストを行い、1.1×10-11 pa m3/sec以下であることを確認した。

図3 下部タンク上の中間板の様子

図4 ドリフトチューブアライメントの様子

2.3 ローパワーテスト

ネットワークアナライザーからのホワイトノイズを加 速器に投入し、その反射を測定し空胴共振周波数、Q値 を測定した。空胴共振周波数は97.60MHz、Q値は19000で あった。また、ドリフトチューブ間に発生する電圧は、 LabVIEWによりコントロールされたステッピングモー ターによりアルミニウム球を摂動し、空胴共振周波数の 変化から求めた。その結果を図6に示す。空胴共振周波数の モデルからの5%以上のずれ、電圧分布の約±20%のず れは予想外のものである。考えられるのは、リッジと端 板との距離が20mmしかない入射側に、真空排気用の6イ ンチポートが開いてあることで、端板肉厚分(20mm)磁場 fluxが流れ込んだためにこのような誤差が発生したと考察 される。そこで、出射側ではリッジと端板との距離が 100mmと十分開いているので、中間板を取り外して、逆 さにしてから再度上下タンクではさむ予定である。

3.粒子軌道計算プログラムの開発

3.1 OPERA-3D

電磁場解析用ソフトOPERA-3Dを用いて、本加速器の 電磁場解析を行った。メッシュ間隔はドリフトチューブ 間で2mmステップ、ドリフトチューブ内は4mmステップ、 ドリフトチューブ内径(φ14)は10分割、空胴の対照性 のある軸で2等分して行い、メモリー10GBytes、計算時間 は4時間を費やした。円柱であるステムを四角柱で置き換 えたために、電圧分布、共振周波数は予想できる範囲で ずれてしまったが、その計算精度は、加速軸方向の電場 分布をフーリエ展開したところ、0次の項に対し、1次は 0.22%(これはステムにより発生したdipole成分であると 考えられる)、2次以降(multi-pole成分)は0.073%以下 であり、精度よく計算されていることがわかる。

電磁場解析を行ったことにより、モデルによる電場分 布測定以上の精度を持って空胴内の電場分布が把握でき た。これはつまり、低エネルギー側におけるドリフト チューブ内へのしみこみ量や、出射側付近におけるステ ムによるdipole成分の影響(本来は円柱であるため、今回 の四角柱で代用した結果よりかはその影響は少ないと思 われる)を考慮に入れた単粒子軌道計算を行えば、より 空胴内での粒子の運動を把握することができる。

図7 入射側における電場のしみこみの様子

3.2 計算プログラムの開発

電磁場解析用ソフトOPERA-3Dの計算結果から、空胴 共振周波数、ドリフトチューブ内の電場(Ex,Ey,Ez)成 分を0.5mm間隔で値を抽出する。単粒子軌道計算プログ ラムでは、時間分解能を共振周波数の1/72間隔でRunge-Kutta法を用いて計算する。粒子が受ける電場は1次の内 挿式を用いた。まず、加速軸に傾き0で入射した単粒子 の運動により、出射バンチ幅が最大になるような入射エ ネルギーと電場の強度(V_factor)を決定する(表2)。つ ぎに、バンチ幅内の位相時のTransverse Acceptance(x-x'、 y-y')を求めるために、200(x方向)*200(x'方向)の粒子を 空胴内に入れ、出射エネルギーの±5%まで加速された粒 子から出射ビームのエミッタンスを求め、それを元に戻 すことによりアクセプタンス求める(図8)。単粒子運動の みに注目して(空間電荷効果は除いて)、空胴内でのベー タトロン振動、シンクロトロン振動を求める予定である。 表2 入射エネルギーとV_factorの決定(例)

Input Energy (keV)	V_Factor	Phase	Extraction Energy(MeV)
40	100	0	1.74659
40	100	5	1.75404
40	100	145	2.00491
40	100	155	1.65135
40	100	160	1.63369
40	100	165	1.60244
40	100	170	1.7174
40	100	175	1.75947
40	100	345	1.85893
40	100	360	1.74659

図8 Transverese Acceptance(155°)(例)

4.まとめと今後の予定

製作した入射テスト器の空胴共振周波数と電圧分布の ずれは予想以上に大きかったが、3枚おろし構造の利点で ある作業性により、中間板を逆にして付け替える試みを 今後行う。また、OPERA-3D内で構造を作成する段階で の考察が必要(ステム形状四角柱⇒円柱)であるが、こ れを基にした単粒子軌道計算プログラムの開発は、 OPERA-3D以外での電磁場解析ソフトによる計算結果を 用いても有効であるため、更なる計算能力を持たせるこ とが今後の予定である。

文献

- [1] S.Matsui,et.al.;Proceeding 24th Linear Accelelator Meeting,24(1999)149-151
- [2] T.HAttori,et.al.;Proceeding 25th Linear Accelelator Meeting,25(2000)294-296
- [3] K.Yamamoto,et.al.;Proceeding 26th Linear Accelelator Meeting,26(2001)189-191
- [4] K.Yamamoto,et.al.;Proceeding 4th Symp. on Accelerator and Related Technology for Application, 4(2001)27-30
- [5] K.Yamamoto,et.al.;Proceeding 27th Linear Accelelator Meeting,27(2002)66-68
- [6] K.Yamamoto,et.al.;Proceeding 28th Linear Accelelator Meeting,28(2003)230-232