PRODUCTION OF VARIOUS HEAVY IONS BY AN INVERTED SPUTTER ION SOURCE AT THE JAERI TANDEM ACCELERATOR

E.Minehara, T.Yoshida and S.Abe Japan Atomic Energy Research Institute, Tokai Research Establishment Tokai, Naka, Ibaraki 319-11 Japan

K.Nakanishi

Kobe University of Mercantile Marine, 5-1-1 Fukaeminami, Higashinada, Kobe 658, Japan

ABSTRACT

Fifty elements ranging from hydrogen to bismuth were produced by utilizing an inverted sputter source installed in the JAERI negative ion source test facility, and pressed or MMP(Methyl Methacrate Polymer) binder-fabricated rods of the ion source materials. Current intensities of the most elements were measured to be tens of times higher than the Refocus UNIS sputter ion source. Lithium negative ions were accelerated to know matching property of the ion source with the accelerator. Transmission data of the Lithium and Nickel beams reconfirmed that the ion source emittance was lower than the Refocus UNIS sputter ion source.

INTRODUCTION

Since the installation date of the JAERI tandem accelerator ,June 1982 , thirty-one elements ranging hydrogen to bismuth have been successfully accelerated up to now. Negatively-charged atomic and molecular ions of these elements were obtained from a Refocus UNIS negative ion sputter source, a direct extraction duoplasmatron ion source, and a Penning ion source with radial extraction. Fourty-eight elements other than the accelerated had been extracted from the ion sources. Negative ion currents of the extracted and accelerated elements are summarized in Fig.1. Details of the ion sources and how to extract these elements were already reported in the previous papers^{1,2}.

As shown in Fig.1, most of the elements were availiable with the analyzed current lower than a required current intensity by experiments. In order to increase the available intensities, we decided to introduce a new inverted sputter source using a spiral ionizer made from tantalum tube³. It has been reported that the ion source could produce the most elements with brighter and tens of times higher current than the Refocus UNIS ion source⁴. Before the ion source would be used in the routine operation of the JAERI tandem accelerator, fifty elements from hydrogen to bismuth were tried to be produced by utilizing the ion source installed in the JAERI negative ion source test facility. In addition to the production, lithium negative ions were accelerated to know matching property of the ion source with the accelerator. In the following, the summary of the production and the acceleration of them are presented.

FABRICATION OF THE SPUTTERING MATERIALS

Sputtering rods of the ion source materials were fabricated by pressing powdered materials with or without impregnated binder. In the case of the rods without impregnated binder, a small hydraulic oil press was used to shape the powdered or granular materials. Some of the materials were also hand-pressed to shape in rods with MMP(Methyl Methacrate Polymer) binder, and compared with the rods without the binder. The binder used here has been successfully used for the the Refocus UNIS ion sources in JAERI tandem accelerator laboratory for this nine years. Details of the fabrication method for the sputtering rod with the binder are exactly the same for the sputtering cones⁵. We fabricated a hundred and several tens kinds of rod over the 50 elements.

NEGATIVE ION SOURCE TSET FACILITY

The neagtive ion source test facility⁶ was used as a mass spectrometer to study production of the various heavy ions. Negative ion beams were extracted, focused and acclerated by an extractor and einzel lens unit made of ceramic and metal. The beam was analyzed by a double focusing 90 degree magnet with bending radius of 500mm. The beam intensities were measured by an electron-suppressed Faraday cup. Typical resolution of the mass spectrometer was observed to be about 100. The vacuum system was pumped by an Osaka 500 I/s TMP (turbomolecular pump) and a Balzers 100 I/s TMP. System pressure was in the 10⁻⁷ torr region.

PRODUCTION OF VARIOUS HEAVY IONS

A typical mass spectrum of Ni in the region from mass A=1 to 100 is shown in fig.2.

Figure 2, Typical Mass Spectrum of Nickel.

Table 1 describes summaried data of the extracted negative ion currents from a huge number of accumulated mass spectra. Fifty elements ranging from hydrogen to bismuth were extracted from the inverted sputter source, and reported in the table. As current intensities compiled in the table were obtained after a few operation of the ion source, these values should not be thought to be the maximum, should be the typical, and the easily-attainable.

Table1. Extracted Negative Ion Currents from An Inverted Sputter Source.

AtomicNumber /Element		Material Form	Binder	Analyzed Ion Beams Form /Current (microampere)		
1	Н	Sc+H ₂		H-	23.0	
		TiH ₂		H-	4.0	
3	Li	Li ₂ O	MMF	P Li⁻	5.0	

5	В	¹⁰ B (enriche	B- BO-	6.2 14.7	
6	С	C (graphite)	C-	100.	
8	0	NaHCO3+Mo	20 0 ⁻	36. 86.	
		MgO		0-	64.
		Sc		0-	46.
		Zn Zr		0-	45. 26
		W		0-	28.
	_	Re		0-	62.
9	F	IUB .		F-	14. 15
		Al		' F ⁻	11.
		TiH ₂		F-	20.
12 Mg		MgO		MgO ⁻	0.65
13 Al		Al (powder)		AI AIO ⁻	1.0
				2AI ⁻	8.5
		Al (solid)		Al-	1.0
14.9	Si	Si (powder)		ZAI Si⁻	8.0 90.
14 51				2Si ⁻	6.0
		_		3Si ⁻	1.0
15 F		Р		P 2P ⁻	21.0 1.7
16 5	S .	NiS	MMP	S ⁻	22.5
20 (Ca	CaO		CaO ⁻ ScH ⁻	0.26 5.4
213	50	30		ScO ⁻	1.6
22]	Гі	Ti		Ti ⁻	0.25
23 \	/	V		V VO ⁻	0.81
		VH _x		V-	1.1
				VO ⁻	1.1
24 (Cr	Cr	MMP	Cr CrO⁻	0.22 0.4
25 I	Mn	Mn		MnO⁻	0.5
26 I	Fe	Fe		Fe ⁻	0.9 1.6
		Fe		Fe ⁻	1.9
				FeC ⁻	1.5
27 (Со	Со		FeO Co ⁻	3.0 4.9
					4.0
28 Ni Ni (solid)			60 _{Ni} -	6.9 2.7	
		Ni (powder)		58 _{Ni} - 60 _{Ni} -	22.1 8.6
29	Cu	Cu		63 _{Cu} -	14.5
20	Zn	Zn		⁶⁵ Cu ⁻ 647nO ⁻	6.6 2.3
00%	Z 11	20		66 _{ZnO} -	1.5
32	Ge	Ge		70Ge ⁻ 72 _{Ce} -	4.4 6.4
				74Ge-	7.9
	_			75 _{Ge} - 79p	1.6
35	Br	KDBr+Al		81 _{Br} -	23. 22.
38	Sr	Sr		SrO⁻	0.04

39 Y 40 Zr	Y Zr	•	YO⁻ Zr⁻	0.15 0.1			O: 20	602 ⁻)s⁻	1.1 1.3
			ZrO⁻	1.0	77 Ir	lr	 Ir⁻	-	24.
41 Nb	Nb	MMP	NbO ⁻	0.37			IrC)-	3.4
				0.8			21	-	3.6
			NbO ⁻	3.2	78 Pt	Pt M	MMP Pt	-	19.5
42 Mo	Мо		Mo	0.27	70 4.	Α.,	21	't- 	1.5
			MoO ⁻	1.3	79 Au	Au	AL 2/	1 \\\\ -	02. 75
	NaHCO3+M	lo	MoO⁻	0.4			34		6.0
			MoO2 ⁻	1.4	81 TI	Tl ₂ O ₃ +Fe	TI	о- С-	1.7
			MoO3⁻	3.9	83 Bi	Bi	Bi	-	0.3
			MoO ₄ ⁻	6.3			Bi	0-	1.3
44 Ru	Ru		Ru⁻	0.46			Bi	02-	1.62
			RuO ⁻	0.3		Bi ₂ O ₃ N	MMP Bi		0.48
			2Ru ⁻	0.6			Bi	0- 1	1.6
	-		Ru ₂ O	0.5			Bi	02-	5.7
45 Rh	Rh	MMP		6.5	٨٥				•
			2Bh ⁻	2.0	AC	CELERATION OF	LITHIUM	10113	
46 Pd	Pd		Pd ⁻	0.14	Lithium ior	n beams were acce	elerated to	investia	ate
			PdO ⁻	0.4	optical match	ing properties of th	e ion sou	ce with t	he
			2Pd⁻	0.7	negative ion i	njector and tanden	n accelera	tor. In	
	_		3Pd ⁻	0.2	comparing wi	th the lithium curre	nt intensit	y analyz	ed in
47 Ag	Ag	MMP	Ag ⁻	20.7	the test facilit	y, the intensity afte	r the injec	tor were	the e
			ZAG 3Ag ⁻	1.5	table1 The h	be about one-tenth	rough the	injector	uie was
50 Sn	Sn		Sn ⁻	0.4	thought to be	caused by weak for	ocusina of	the infle	ctor
			2Sn⁻	2.5	magnet in the	e injector.	. 0		
			3Sn⁻	1.4	Table 2 de	scribes the accele	ration data	a of the l	ithium
51 Sb	Sb		Sb⁻	2.0	ions. The beam currents were measured by				
			SbO ⁻	2.0	electron-supp	pressed Faraday cu	ips distrib	uted alor	ng the
			SDU2 286-	3.0	accelerator be	eam lines'.			
			230 3Sb ⁻	4.0 2.2	Table 2 Acc	eleration of lithium	ion beam		
52 Te	ZnTe	MMP	Te ⁻	6.85	Terminal Volt	age	14.8	88 MV	
53 I	KI+AI		I ^{- ,}	38.	Ion Source Vo	oltage	20.0) kV	
55 Cs	Cs ₂ SO ₄ +A	g	Cs⁻	0.2	Preacceleration	on Voltage	198.4	kV	
57 La	La ₂ O3		La⁻	0.02	Final Energy	Stata	59.7	Mev	
			LaO⁻	0.12	Ream Curren	t at Injector	4.7	7 micro	amperes
			LaO2-	0.58	Beam Curren	t at Injection Line	0.6	6 micro	amperes
64 Gd	Gd ₂ O ₃ +Ag		GdO⁻	0.2	Beam Curren	t before Foil Stripp	er 0.3	8 micro	amperes
72 Hf	Hf		HfO ⁻	0.15	Beam Curren	t after Foil Stripper	0.7	micro	amperes
73 Ta	Ta		la ⁻	0.11	Beam Curren	t after Analyzer	0.7	micro	amperes
			TaO TaOo ⁻	0.64	÷.	· · · · · · · · · · · · · · · · · · ·			
74 \\	\ \ /		W-	1 14		REFERENC	CES		
/-+ ••			WO-	1.84	1) E Minehar	aetal Proc.4th S	wmp on l	on Sourc	es and
			WO2	1.77	Ion Applica	ation Technology. T	okvo(198	0) p.261	
			WO3 ⁻	1.38	2) E.Minehar	a et al., Proc. 8th S	symp. on I	on Sourc	es and
75 Re	Re		Re ⁻	0.11	Ion-assiste	d Technology, Tok	yo(1984)p	o.153.	
			ReO⁻	10.8	3) R.Middleto	n, Nucl. Inst. Meth.	. A220(19	84)104.	
			ReO ₂ ⁻	12.6	4) G.Doucas, 5) S Aba at a	et al., NUCL INST. N	on Ion Sc	19/0)11	nd
			ReO ₃ ⁻	5.7	Ion-assiste	d Technoloav. Tok	yo(1982)	0.185.	
			ReO ₄ -	1.5	6) E.Minehar	a et al., Nucl. Inst.	Meth. A21	2(1982)	533.
76 Os	Os		Os⁻	5.7	7) M.Maruyar	ma, Proc. 3rd Int. C	onf. on E	ectrosta	tic
			OsO ⁻	8.6	Accelerato	r Technology, Oak	Ridge, Te	ennessee	e(1981).

-74-