PRESENT STATUS OF THE TRISTAN ACCELERATOR CONSTRUCTION

Yoshitaka KIMURA, for the TRISTAN Accelerator Group

KEK, National Laboratory for High Energy Physics

The TRISTAN Phase-I project aims at achieving electron-positron beam collisions in the CMS energy range of $30 \sim 60$ GeV. The project has been carried into execution in April 1981 and is scheduled to be completed in 1986. The TRISTAN Phase-I accelerator complex consists of

- 1. a main electron-positron colliding ring, MR, (FY 1982 \sim FY 1985),
- 2. an electron-positron accumulation ring, AR, as a booster for MR (FY 1981 \sim FY 1982),
- 3. a linear accelerator as an electron and positron injector for AR (in operation), and
- 4. a high intensity electron linear accelerator for positron beam generation (FY 1982 \sim FY 1984).

The accelerators are to be built in the periods of time noted above. The construction of the AR tunnel has begun in November 1981 under the direction of the Civil Engineering Division. Preparations of accelerator components for AR are underway on schedule. General parameters of the accelerators are listed in Table 1 \circ Table 4.

Table 1

General Parameters of the Main Electron-Positron Colliding Ring

Circumference	3018.08 m
Length of long straight sections	194.35 m × 4
Average radius of curved section	346.69 m
Bending radius	246.53 m
Revolution frequency	99.33 kHz
RF frequency	508.58 MHz
Whole length of RF cavities	350 m
Injection energy	6 ∿ 8 GeV
Maximum energy	25 ∿ 30 GeV
Number of interaction regions	4
Amplitude functions at colliding point (β_x^2/β_y^2)	1.12 m / 0.07 m
Maximum design luminosity	$5 \times 10^{31} \text{ cm}^{-2} \text{ sec}^{-1}$

Table 2

General Parameters of the Accumulation Ring

Circumference	377 m
Length of long straight sections	19.45 m × 2
Length of RF sections	19.05 m \times 2
Average radius of curved section	47.7 m
Bending radius	23.17 m
Revolution frequency	0.795 MHz
RF frequency	508.58 MHz
Injection energy	2.5 \sim 3 GeV
Maximum energy	$6 \sim 8 \text{ GeV}$
Maximum design beam current	60 mA

Table 3

General Parameters of the Main Injector Linac

Maximum beam energy	2.5 \sim 3 GeV
Acceleration frequency	2856 MHz
Beam pulse width	~ 1 ns
Peak current (electron/positron)	500 mA / 10 mA
Repetition rate	50 pps

Table 4

General Parameters of the Positron Beam Source

Electron linac for positron generation		
Electron beam energy	200 MeV	
Beam pulse width	~ 1 ns	
Peak current	10 A	
Energy spread	1 %	
Post-linac for positron acceleration		
Positron beam energy	200 MeV	
Beam pulse width	\sim 1 ns	
Peak positron current	10 mA	
Energy spread	5 %	