超小型JFET線量計による電子リニアックのビームプロフィール測定

冒增多喜夫、山崎铁夫、千脇光国、杉山阜、杉山通人*

電総研、法大工*

このJFET線量計は、2ヶのJFETとR、Cなどの素子で構成されるマルチバイブレータの周期変化を利用するもので、2ヶのうちノケのJFETが放射線検出器として他の素子から分離され、リニアックからの電子線はJFET(4.2^{mm} ϕ × 4.3^{mm}H)のキャップの円平面(4.2^{mm} ϕ) 能重直に入射する。検出面積は0.5^{mm}×0.5^{mm}程度である。Fig./は、周期Tの変化 t々と電子フ ルエンス量やとの関係を示す。図中の直線は、t ϕ =To-T ϕ = $\phi^{n-1}(n \approx 1)$ を示し、 $\Delta t \phi$ = $n \Delta \phi$ (: $\phi^{n-1} \approx 1$)の 関係が成立する。マルチバイブレータのR, Cの値はTo ≈ 400 μ Sに なるようにした。Fig.2は、電子ビームの直径に沿ってJFET検出器を移動させたときの周 期変化量 $\Delta t \phi$ とJFETの位置との関係を示す。縦軸は電子ビーム 1 μ C 当りの周期変化量で あり、A,B,Cの3例のみを示したが、JFET(25K/S)が違っても測定されたビームプロ

フィールは良い一致玄示している。 Fig.3は 測定されたプロフィールから予想される電子ビ ームのプロフィールとの、/mm厚さのT;窓ての(sn)電子の多重散乱によって広がったビームのプロ(sn)フィール玄示した。実験値はいずれもT:窓か らこcmのところで測定された。多重散乱効果 支考慮に入れたプロフィールと実験値との一致 は良好である。破線で示されたプロフィールの ように少くとも 2^{mm} 中以内では電子が均一に 分布していること、平均して約3^{mm} 中の電子 1 ビームであることが予想される。

Fig.3 Comparison of the calculated profile with the experimental one