HIGH POWER KLYSTRON:INSULATION AND MAINTENANCE OF OIL QUALITY

Shigeru Isagawa ^{#,A)}, Masato Yoshida^{A)}, Kotaro Bessho^{A)}
^{A)} High Energy Accelerator Research Organization (KEK)
1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

Abstract

To keep the high power CW klystrons in good condition, the socket insulation must be maintained by controlling oil quality properly. Interfacial tension between oil and water can be a good indicator showing build-up of intermediate compounds, radicals, organic acids and sludge in the oil. Although its correlation with dielectric breakdown voltage is poor, that with volume resistivity is high, firstly linearly and secondly logarithmically. In case of P-tubes, annual oil change is obligatory. By retaining the value above 25-30 mN/m, however, T-tubes can be operated safe for 5 years or more with respect to the socket insulation. Past examples of insulation trouble and design improvement are also discussed.

大電力クライストロン:耐電圧と油の管理

1. はじめに

高エネルギー加速器研究機構(KEK)では KEKB 及 び PF-AR において 40 本にのぼる 509MHz/1-1.2MW 大電力連続波クライストロンが使用されている。球 は2種類、P社の1MW 球とT社の1.2MW 球で、共 に油絶縁油冷方式の電子銃を採用している。常時高 電圧が印加されるこれ等多数の球の油絶縁性能を維 持するのは実は非常に大変で、油の健全性を短時間 に精度良く評価する方法が、当初から求められてい た。管理方法としては、次を満足せねばならない。 (1) 試料は作動中でも採取可能である事。(2) 分析評価 は短時間に構内で行える事。(3)油の劣化の現状と、 将来の性状変化の予測が出来る事。何か1つ物理量 を押さえて、油の劣化と耐圧を合理的確実に管理出 来ないか。着目したのが「油-水界面の界面張力」 である。然し当初油の劣化とこの量を関連付ける データは無かったので、自らデータを集積すべくこ の研究は始まった。

2. 大電力クライストロンの油絶縁

2.1 ソケット絶縁油

ソケット油タンクは P 社球では球と一体、T 社球 では球ソケットイン式で、旧型(青)と新型(赤) の2種類が有る。KEK の主なソケット油タンクをま とめると表1となる。それぞれ油のバッファータン クを備え、シリカゲルと吸着剤入りエアーブリー ザー(吸湿呼吸器)で呼吸する。

作動油には次の特性が求められる。(1)絶縁耐力が大きい。(2)粘度が低い。(3)引火点が高い。(4)凝固点が低い。(5)機器を侵食しない。(6)電気的化学的に安定無害である。最近ではシリコン油の様な合成油を使う向きも有るが、我々は終始「日石高圧絶縁油 A」なる石油由来の鉱油を使っている。成分は所謂

表1:ソケット油タンクの種類

型式	定格 MW	容量 L	冷却方 式	タン ク	端子方向	
P社	1.0 CW	160	フィン 空冷	SUS	側面3本	
T 社 (旧)	1.2 CW	970	リブ空 冷	Fe	上面3本	
T 社 (新)	同上	550	フィン 空冷	同上	同上	

「脂肪族炭化水素」で、炭素原子が線状に配列して いる鎖状炭素化合物である。メーカー社名の変遷は 有るが素性は不変と考えている。JISC2320 において 7種類に分類される種類 A では、1種4号に該当し、 消防法では危険物第4種第3石油類(非水溶性)危 険等級 III に規定される。引火点148℃、発火点(参 考値) 200~410℃。動粘度は40℃、100℃でそれぞ れ 6.01mm2/s、1.88mm2/s と低く抑えられている^{III}。 尚油中に水分が、遊離、乳化、溶解、の形で共存す ると絶縁特性は著しく低下するので注意を要する。

2.2 油の劣化過程

主成分が脂肪族炭化水素の絶縁油は、空気や油中 に含まれる酸素、湿気、及び熱、光、金属イオン、 等の働きによって徐々に酸化される。化学的には、 油中の不飽和脂肪族炭化水素が酸素を吸収して 過 酸化ジアルキル ROOR'、過酸化酸(過カルボン 酸) RC(=O)OOH 等で表わされる不安定な有機過酸 化物(パーオキサイド)を生じ、これが転位して、 不飽和のハイドロパーオキサイドを生ずる。有機過 酸化物は分子中に結合エネルギーが比較的小さい O,²(-O-O-)結合を持っているため、比較的低い温

[#] shigeru.isagawa@kek.jp

度(40-70℃)でも熱的に分解し、あるいはまた還 元性物質と反応して、容易に遊離ラジカル(遊離 基)を生成する。

過酸化物の熱分解によって生成するのは2系統 有って、ひとつは、アルコール化合物(R-OH)、 さらにアルデヒド化合物(R-(CH)=O)と進むもの、 もうひとつはケトン化合物(R1-(C=O)-R2)となる もの、である。いずれも、さらに酸化過程が進むと、 有機酸(R-(C=O)-OH)を生成し油中の酸価増大に 寄与する。油中に含まれる有機酸(カルボン酸)濃 度の量を示すのが全酸価である。

酸化過程において出来るこれ等の化合物は全て親 水性基を有し、有機酸の存在する以前の中間段階に 於いても、界面張力は低下し酸化の非常に敏感な前 駆現象と把えられる。界面張力は、油中に含まれる 微量の親水性化合物の濃度の目安だからである。一 方中間化合物のアルコール、アルデヒド、ケトン類 は、単独で解離してイオンとなることはないが、増 えると溶媒全体の誘電率が高まり、イオン性物質 (有機酸など)の解離が促進される。よって全酸価 が増すと油の導電性が高まり、絶縁性能は悪化する。

このように油は酸化すると導電性物質を生成し、 酸価が増大、さらにスラッジ(sludge)を生成し、性能 が低下する。劣化が進むとスラッジは油中に浮遊し、 油の流動帯電作用^[2]により、電極やタンク内壁、碍 子に析出し熱の放散を妨げ、放電の素となる。ス ラッジには 1)アスファルト性、2)石けん性、3)炭素 性、の 3 種が有るが、この内 3)は電極のアークに よって生成するとされ、高温(3000~5000℃)によ り水素、アセチレン、炭酸ガス等の分解ガスが発生、 爆発の危険性も生ずる。さらに放電等で、電極材料 (MC ナイロン®等)の一部に損傷が生ずると、こ れが油中に溶け出し、分解して 3)の炭素性スラッジ になるといった悪循環が起こり、特に高温で動作す る P 社球の油では劣化が早く進むと考えられる。

3. 油の分析と、油-水界面の界面張力

油-水界面張力と絶縁油の諸物理量との関係を調 べるべく、更油等の機会を捉えて、油の分析と界面 張力の同時測定を行ってきた。採油には 2 法あり、 更油時ドレーンから排出される油を 4L 缶 2 本に取 る場合、1 本はメーカーに分析を依頼、1 本は KEK で測定に使用。一斉測定の場合は、ガラス製 20ml 注射器に長いフッ素樹脂チューブ($1.5\phi/3.5\phi$) を 2 重熱収縮チューブでつなぎ、バッファータンクに 突っ込み、100mlPFA 広口管(PTFE 内栓付) に集 めた。これは球の作動中も採取可能という利点があ る。メ分(mass PPM)、絶縁破壊電圧 (kV)、誘電正 接 (80℃,%)、体積抵抗率(80℃,TΩm)、全酸価(mg KOH/g)。内水分は JIS K2275 の試験法で、あとの 4 量は JIS C2101 に基づく試験法で測定された。

アルコールや脂肪酸水溶液の表面張力と濃度の関係はかなり詳しく調べられており、シスコフスキーの実験式がよく合う^[3]。微量の親水成分を含む絶縁油の界面張力γは、親水成分の濃度 *C* と次の様に関

連付けられる。

 $\gamma = \gamma_0 - b \ln (1 + a C)$

ここで、 γ_0 :純粋な絶縁油の界面張力、a, b:物質 に固有の定数、である。Cの増大により γ は低下す る。又、Cは導電率と直接関係するので、 γ は、油 の導電率、従って体積抵抗率の変化を示唆する。

界面張力(25℃)は KEK で自動表面張力計を用 いて測定した。機種は協和界面科学㈱製 CBVP-Z 型。 測定子を試料溶液に浸し、界面張力の作用により掛 かる応力(変位)を天秤のセンサーで検出する。溶 液にはビーカーに取った純水/試料油を、測定子に は白金プレートを用いた。一部試料については KEK でも全酸価を中和滴定法で測定した。一定量の油試 料をエタノールに溶解し、KOH/エタノール溶液を 滴下し乍ら PH を測定、滴下量に対する PH をプ ロットして中和終点を検出。消費した溶液の絶対量 から全酸価を決定する。滴下用 KOH/エタノール溶 液には、2.4mg/ml、0.11mg/ml の2種を使い分けた。

4. 考察

4.1 回帰分析

油の分析と油-水界面張力の同時測定の結果を集 積し、回帰分析を行って各物理量間の相関係数 R 及 びその2乗 R2を調べた。主な結果を表2に示す。P 社球、T 社球をそれぞれ分けた場合と、全データを 合わせた場合の両方が分析されている。データは長 年積み上げたものだが、実は限界がある。P 球では 「毎年更油」に転じた為、新たな劣化油データが途 絶えた事、T 球では劣化速度が遅く、予防的に更油 する事が多い為、破壊電圧が管理値を超えて下がる 様な劣化例が皆無である事、である。

図1は、全データについて、界面張力と絶縁破壊

表2:物理量間の相関関係

Y 軸	X 軸	R	R2	観測数	コメント
[全球]					相関が
界張	耐圧	0.29	0.08	51	殆どない
界張	LOG 体抵	0.69	0.48	51	かなりある
[P 球]					
界張	耐圧	0.46	0.21	21	ややある
界張	LOG 体抵	0.81	0.65	21	かなりある
LOG					
全	LOG 体抵	0.62	0.39	10	ややある
[T 球]					
界張	耐圧	0.09	0.01	30	殆どない
界張	体抵	0.45	0.2	30	ややある
界張:	界面張力	耐圧:絶縁破壊電圧			

体抵:体積抵抗率 全:全酸価

電圧の相関関係を示している。データはばら付いて いて R は 0.29 で相関関係は「殆ど無い」。但、表 2 に示される様に、P 球に限ってみれば R 0.46 (R2 0.21)で相関は「やや有る」。

原因は、前述の試料の限界によるものである。又 一般に、絶縁破壊電圧と絶縁油の劣化は必ずしも比 例しない。例え油の耐圧が管理基準値の 30kV 以上 有るとしても、油は安定しているとは限らない。何 故なら破壊電圧のギャップ試験では、油中の遊離水 分、スラッジ、等の夾雑物の有無の判定にはなるが、 2.2 で述べた油自身の内部でおこる化学的劣化の状 態を判定することは出来ないからである。

P 球にみる様に、絶縁破壊は油中で起るのではな く、油中の夾雑物が特定の電極部位に集積し、電位 を持つ事によって起る。媒介するのは油の流動帯電 ^[2]、電荷を運ぶ有機酸等のイオン、炭素性等のス ラッジである。より重要なのは、体積抵抗率に反映 される、油の中のこうしたイオンやスラッジ等の汚 れ量の増大である。図2は、全データについて、界 面張力と LOG 体積抵抗率の相関関係を示しており、 相関はRで0.69(R2 0.48)と「かなり有る」。汚 れが広範囲に亘る P 球だけをとれば、表2より、相 関はさらに上がって、R で 0.81 (R2 0.65) である。 T 球では、界面張力は LOG 体積抵抗率より体積抵 抗率との相関が高く、R 0.45 (R2 0.2) で「やや有 る」となる。これは T 球のデータが劣化の初期段階 に集中していて、不安定な過酸化物(パーオキサイ ド)が増えていく誘導期間に当る事と符合している。 相関が緩いのは、試料油が皆それ程劣化していない 範囲で採られているからである。P 球では対数的に 酸化(劣化)が進んで、体積抵抗率が減っていると 考えられる。絶縁破壊の前駆症状として、夾雑物量 の変化を反映する、油-水界面張力や体積抵抗率の 減少は、劣化の重要で鋭敏な指標になっている。

4.2 保守管理と更油のタイミング

図3にT球について行った、油-水界面張力の更 油後年次変化の様子を、各クライストロンについて 辿った結果をまとめて示す。AR-W1のみ旧型、他 は全て新型ソケットである。

相関が弱いので、界面張力の結果から直接耐圧を 推測出来ないが、T 球の場合も、界面張力の低下は 有機酸の形成等汚れの増大を示している。耐圧劣化 の前駆と考えられる界面張力 (mN/m)の変化は、 T球新型の場合、更油後5年目位までは、年当り1.0 ~1.5 の緩いが確実な低下で、線形近似が成り立つ。 油量の多い旧型でも低下レートは、初めは、同じで ある。(但3年目以降安定し、低下はさらに緩 い。) 然し 6 年目を過ぎると低下は急に早まり線形 予測から外れる。これは油の酸化が反応速度の小さ い初期の誘導期間を過ぎ、酸素の吸収が烈しくなり、 対数的に進行する酸化促進期に移行するからと考え られ、図3の棒データの下への落ち込みがそれを示 している。最長でも5年以内に界面張力再チェック を行う必要があり、管理の目安として、値 (mN/m)が35より下がったら要警戒。30を割っ たら更油を考え、25以下なら即更油、と定めていて

図1:界面張力と絶縁破壊電圧の相関関係 (全データ)

図 2 : 界面張力と LOG 体積抵抗率の相関関係 (全データ)

図3:油-水界面張力の更油後年次変化(T球)

間違いない。

5. 放電トラブル

5.1 耐圧劣化の具体例

以下に大電力クライストロンの開発と運転の長い 経緯の中で有ったトラブルを 2~3 報告しておく。

図4:碍子(ステアタイト)の沿面放電

図4は、1987 年頃 T 球旧型ソケットで起った絶 縁トラブルの碍子である。Body (アース)と HK (-90kV)間を隔てる6本のステアタイト MgSiO₃ 製(O.D.60.8 ¢、L170.2mm)で、150kV、30分の 耐圧試験に合格している。1本には枝分かれの酷い 雷マークが、もう1本にも沿面放電の黒い痕跡があ り、釉薬が溶けて酷い傷になっている。当時の球は 時々Body 水漏れを起こし、油中に水分が入る事例 も有った。水分が油中に有ると、特に冷たいセラ ミック表面に凝結するので、沿面放電が起り易い。 トラブル後碍子と油は交換され、今も使われている。 旧型の様な大容量の油タンクは安定で好ましいが、 一度水滴が入ると、全油交換を強いられるので、水 分には特に注意が必要である。

図5:アノード端子フランジ側の放電痕と孔

図5は、P球変調アノード用高電圧導入端子で 時々見られる、MCナイロン®フランジ側(アース 電位)に無数に開いた貫通孔である。円筒の外径は 70mm φ、長さは285mm、で放電箇所は端面から約 20~30mmの円周状。エア抜き穴があり空気は抜け ているが、フランジ先端コロナリングとの間に無数 の放電が走り、孔が明き貫通に至る。MCナイロン ®には油の流動帯電により汚れが堆積し電位が発生 し初めは小さな放電を起す。孔はナイロン内部 1~2mm に広がって空洞乃至焼けたダメッジエリアを形成する。因に MC ナイロン®(MC901)の連続使用可温度は-40~120℃、融点は 222℃である。

人知を超えるトラブルが起ったのは 1998 年 11 月 26 日 KEKB D11-A ステーションの P 球 (V27) に 於いてであった(図6)。突然ヒーター不足電流で HV がダウン、調査すると、高圧導入端子の内 H 端 子とA端子に異常があり、H端子のMCナイロン® が溶けてフランジから上方に吹き出し床面に堆積。 ナイロンは内側天井部で縦に溶け落ち、先端の BS 製チップが回転して銅縄線を引きちぎって抜け落ち た為、ケーブルを引き抜くと油がどっと流れ出る状 態であった。BS チップは油中にも拘らず物凄い勢 いで走り、SUS 油タンクの内壁に激突しており、半 月形の痕跡を残していた。A 端子もナイロンが天井 部から溶け始めていたが H 端子程酷くなく、HK 端 子は全く健全であった。接触不良か、小さな放電を きっかけとした、温度上昇をともなう爆発的溶融と 考えられ、発生し閉じ込められた水素ガス等のガス 爆発が有ったのかもしれない。又、0 リングシール に問題が有ったので端子内部で油漏れが発生してい たかもしれない。トラブル時、球の(従って油の) 通電時間は TLV373.7h で決して多くは無かった。球 を分解し、高圧端子と油を交換。調整後この球は間 題無く使え、未だに現役で TLV5.3 万 h に至ってい る。毎年の更油と高圧端子のメンテを行っているの は言うまでもない。

5.2 高圧導入端子他の改良

高電圧導入端子は、元々、本クライストロンの為 KEK とニチコン㈱の協力で設計・開発された。MC ナイロン®製絶縁筒を、ニッケルメッキした BS 製 フランジ(アース電位)と電極チップ(DC100kV 連続)で挟む構造で、20D2Vケーブルを差込み、先 端をソルトンの接続子(BL-12N)で電気接触し、 コーン型シリコンゴムパッキンで筒とケーブルを隙 間無く埋めて固定する。油のシールは、チップ側と フランジ側2カ所のOリング(ブナ)で行われてい たが、図7に示す様に今回これを改良した。従来品 がOリング断面を2壁+2壁で封じていたため、ネ ジ込みによって捻れて変形し漏れ易かった為である。 改良型ではOリング(フッ素ゴム)断面を3壁+1

壁で封じるので、0 リングの捩れや変形は起りにく く抜群の改良となった。0 リング溝は、ナイロン側 に設けたので、従来の金属部品もそのまま使える。 He 真空リークテストや DC150kV 1 分間の耐圧試験 に合格させている。端子を油タンクに取り付ける O リングも材質をフッ素ゴムに変えている。フランジ 先端のコロナリングの断面形状については尚模索中 である。ナイロン筒との間隙をシリコンシーラント で埋めると上手く機能したので、コロナリングせり 出しをやめてエア抜き穴も取るか、逆にせり出しを 厚くして、間隙を狭くして異常放電を抑える事が考 えられる。尚、最新の油タンクでは、材質は全て RoHS 対応になっており、タンク蓋やコイルとの接 続大 O リングも全て耐油性の高いフッ素ゴムに変更 している。又、油レベル表示用のビニール管は、 フッ素樹脂被覆の2重管に変更して耐熱耐火性能を 上げている。

図7:導入端子の改良 下:改良前 上:改良後

6. まとめ

更油等のタイミングで、長期に渡って、大電力ク ライストロンの絶縁油の分析と油—水界面張力の測 定を行い、各物理量間の相関を調べた。その結果次 の結論が得られた。1)油の絶縁破壊電圧と油—水 界面張力の直接的相関は殆ど無い。但し球に依って おり、P社の球に限れば弱い相関が有る。2)絶縁 油には流動帯電現象が有り、耐電圧と言った場合、

油自身の絶縁破壊電圧を言う前に、帯電による高電 圧導入端子や碍子での局部放電に対する耐性が重要 である。帯電は油の劣化や汚れが多いと起こり、 油---水界面張力はこれを極めて鋭敏に反映する。界 面張力と LOG 体積抵抗率にはかなりの相関が有り、 殊に P 社球で顕著である。T 社球でも界面張力は体 積抵抗率との間に相関がある。3)これは、油の酸 化によるイオンの増大が初期の誘導期間に線形に ゆっくり進み、促進過程に入ると対数的に進行する ことを示している。P 社球では早く、T 社球では遅 く、通常なら5~6年で加速段階に入る。4)界面 張力は酸化や劣化の良い指標である。P 社球では、 更油は毎年、T 社球では界面張力値 (mN/m) 35 以下で要警戒、30 以下で更油を考え、25 以下で即 更油である。この違いは油の動作温度の違いによる。 劣化の進行が油の対流や温度、容量、ソケットの構 造等に依存する為である。管理の目安をこの様に設 定し早めに更油管理する事によりソケットの耐電圧 は適正に保たれる。

7. 謝辞

界面張力他の測定や分析に日頃御尽力戴いている 放射線科学センター化学部門の皆様に感謝致します。 油の分析で御協力戴いた現 JX 日鉱日石エネルギー ㈱の歴代担当者の方々に謝意を表します。高圧導入 端子の改良設計整作に御協力戴いたニチコン草津㈱ の森均氏、(剤タカノ技研の高野光司氏に謝意を表し ます。

参考文献

- [1] 日石三菱㈱、日石三菱高圧絶縁油 A 商品安全データ シート、2000.
- [2] 平田豊、経年 500kV 変圧器の流動帯電現象に関する 研究、R & D News Kansai 2008.March No.443, pp12-13, 関西電力
- [3] Szyszkowski, Z. phys. Chem. 64, 385 (1908)