BEAM DYNAMICS ANALYSIS IN EXTREME PULSE COMPRESSION USING ELECTRON BEAM COMPACT SIMULATOR

Takashi Kikuchi ^{#,A)}, Kazuhiko Horioka^{B)}, Toru Sasaki^{A)}, Nob. Harada^{A)}

^{A)} Department of Electrical Engineering, Nagaoka University of Technology,

1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan

^{B)} Department of Energy Sciences, Tokyo Institute of Technology,

4259 Nagatsuda, Midori-ku, Yokohama, 226-8503

Abstract

In a final stage of an accelerator system for heavy ion inertial fusion (HIF), extreme bunch compression is required for effective pellet implosion. In this study, we investigate beam dynamics for the extreme bunch compression in the final stage of HIF accelerator complex. The results indicate that high current-low temperature condition in comparisons with current status of experimental compact simulator is necessary to create the space charge dominated beam.

小型電子ビーム装置による極端ビームパルス圧縮のためのビーム 動力学数値シミュレーション

1. はじめに

重イオン慣性核融合の実現のためには、大電流の 重イオンビームを効率良く生成し安定輸送する技術 が必要となる.重イオン慣性核融合のための粒子加 速器の最終集束段近辺では、高電圧を高繰り返しで 印加できる誘導加速モジュールを用いたビーム圧縮 装置を用いてパルス圧縮を行う.重イオンビームに よる実験では大規模な粒子加速器が必要となるため、 電子ビームを用いて小型の模擬実験装置を構築し、 ビーム進行方向圧縮操作に対するビームの挙動を検 討している^[1-2].

本研究では、パルス圧縮の限界を目指し、圧縮過 程のビームダイナミクスについて、実験パラメータ に合わせた理論的・数値的アプローチにより検討を 行っている.

進行方向エンベロープ方程式による空間電荷効果が支配的な条件の見積もり

ビーム進行方向のエンベロープ方程式^[3]は次のように表される.

$$z_{m}^{''} + k_{z} z_{m} - \frac{K_{L}}{z_{m}^{2}} - \frac{\varepsilon_{zz'}^{2}}{z_{m}^{3}} = 0$$
(1)

ここで、 k_z は進行方向の外部集束を表す係数、 K_L は進行方向パービアンス、 z_m は電子バンチ長の半分、 ε_{zz} は進行方向エミッタンスである. 左辺第 3 項が空間電荷効果による反発力、第 4 項がエミッタンスに依存する熱的な散逸力を示す.

式(1)より,空間電荷効果とエミッタンスによる反 発力の比を求めると,次の条件で空間電荷効果が支 配的なビームとなる. ここで、eは素電荷、gはビームの幾何学的形状 因子、 I_{10} は初期ビーム電流、 τ_{60} は初期パルス時間 幅、 ε_0 は真空の誘電率、 k_BT_L は進行方向温度である. 実験条件^[1-2]に合わせると、 I_{10} =100 μ A、 τ_{60} =100 ns、 g=2となる、電子バンチの初期長さの半分 z_{m0} で規格 化したバンチ長をパルス圧縮比とし、式(2)を計算し た結果を図 1 に示す、実験条件において k_BT_L =1eV 程度とすると、式(2)の条件を満たすためには少なく とも 57.8 倍のビームパルス圧縮を行い、パルス幅を 1.73 ns 程度まで縮める必要があると見積もられる.

図 1 :パルス圧縮比に対する空間電荷効果と進行方 向エミッタンスによる反発力の比

 $[\]frac{K_L z_m}{\varepsilon_{zz'}^2} = \frac{3egI_{b0}\tau_{b0}}{40\pi\varepsilon_0 z_m k_B T_L} \ge 1$ (2)

[#] tkikuchi@vos.nagaokaut.ac.jp

3. 多粒子シミュレーションによるパルス 圧縮の検討

3.1 計算モデル

ビーム動力学シミュレーションのために、1次元 の静電粒子コードを用いた^[4].進行方向(z方向) の自己電場 E_z については、以下の近似式を用いる^[3]. ここで、 λ は線電荷密度である.

$$E_z = -\frac{g}{4\pi\varepsilon_0} \frac{d\lambda}{dz}$$
(3)

図2に示すように、各パルス電圧発生モジュール から供給される電圧波形が重畳され、加速ギャップ にビームを圧縮するための電圧が発生する.電子銃 から熱電子放出された電子バンチは加速ギャップで パルス圧縮電圧を与えられ、ソレノイド磁場(0.03 T)によって半径方向に閉じ込められながら、進行 方向に短くなる.

図 2 : ビームパルス圧縮のための電圧パルス重畳に よる誘導電圧発生

パルス圧縮のために誘導電圧モジュールから重畳して印加される電圧は時間 *t* で変化し,以下の式で与えられる.

$$V_{g}(t) = \frac{m_{e}}{2e\left(\sqrt{\frac{m_{e}}{2eV_{0}}} + \frac{T-t}{L}\right)^{2}} - V_{0}$$
(4)

ここで、 m_e は電子 1 個の質量、 V_0 は電子銃の引き 出し電圧に一致させて 2.8 kV、Tは印加電圧パルス 幅であり初期ビームパルス幅と同じ 100 ns、Lは ビーム輸送距離で 2 m である.式(4)で与えられる電 圧パルスの印加に従って、電子銃から引き出された 電子バンチは先頭で大きく減速され、後端は減速さ れない.このため、輸送ラインを通過する間にビー ムのパルス圧縮が実現される.

電子銃から放出される電子は次の熱速度を与える 式によって初期速度に分布を持つと仮定した.

$$v_{th} = \sqrt{\frac{k_B T_L}{m_e}}$$
(5)

3.2 初期ビーム電流値依存性

図3に粒子シミュレーションにより得られたビーム電流波形を示す.初期ビーム電流値を変えて計算 を行い、各々の初期ビーム電流値を1として、パルス圧縮後の電流波形を規格化している.式(4)で与え られる印加電圧波形によって、ビームパルスが圧縮 されていることが分かる.実験結果では最大圧縮率 は6.7倍程度となっている^[1-2].

図 3 :初期ビーム電流を変化させた場合の粒子シ ミュレーションによるビーム電流波形の計算結果

実験と同様に初期ビーム電流を 100 μA とした場 合と 10 倍の 1 mA とした場合では、パルス圧縮後の パルス波形および最大圧縮率はほぼ同じとなった. これまでの研究結果^[5]から、実験条件のビーム電流 値ではほぼ熱的な効果によりビームパルス圧縮が妨 げられていることが分かっている.一方で、初期 ビーム電流値を実験条件に対して 100 倍の 10 mA と して計算を行った場合は、パルス圧縮率が大きく低 下していることが分かる.この結果は、式(2)で予想 される空間電荷効果が支配的となる条件とも矛盾し ない.このため、今回の電子ビーム実験装置で空間 電荷効果が支配的な挙動を示すパルス圧縮を行うた めには、初期のビーム電流値を現状の 10~100 倍程 度向上させる必要があることが分かる.

3.3 加速ギャップ長依存性

パルス圧縮のための速度変調を与える加速ギャッ プの長さを変化させた場合の計算を行った.実験装 置では加速ギャップ長は 15 mm である.式(4)で設 定される速度変調電圧は加速ギャップを無限に短い と仮定して設計されている.純粋に加速ギャップ長 の変化の影響だけを観察するために,空間電荷効果 無しで初期ビーム温度が 0 eV の条件で計算を行っ た.図4に計算結果を示す.

図 4 :加速ギャップ長を変えた場合の輸送端での到 達ビーム電流波形

図4から,温度や空間電荷効果の影響だけでなく, 極端なビームパルス圧縮をする上でギャップ長も考 慮すべき要因になることが分かる.これは粒子が ギャップを通過後に受け取るエネルギーeV₀が

$$eV_{p} = e\int_{z_{1}}^{z_{2}} \frac{V_{g}(t)}{d} dz = e\int_{t_{1}}^{t_{2}} \frac{v_{p}(t)V_{g}(t)}{d} dt \quad (6)$$

となるからである.ここで、dは加速ギャップ長、 $z_1 \ge z_2$ はそれぞれ加速ギャップの入口と出口の位置、 $t_1 \ge t_2$ はそれぞれ加速ギャップ入口へ到達した時刻 と出口へ到達した時刻、 v_n は粒子速度である.

式(6)で表される通り,電子ビームが加速ギャップ を通過中に印加電圧が変化するため,ギャップ長を 無限に短いと仮定した設計値である式(4)から与えら れる速度変調電圧とずれが生じてしまう.

4. まとめ

重イオン慣性核融合で必要とされるビームパルス 圧縮過程を理解するため、電子ビームによる模擬実 験装置を構築し、パルス圧縮の限界を調査するため、 理論的・数値的なアプローチによってビーム動力学 の検討を行った.

進行方向エンベロープ方程式から導出した理論的 な見積もりから,現状の実験装置では空間電荷効果 が支配的なビームを形成するために 57.8 倍以上のパ ルス圧縮が必要であることが予想された.

数値シミュレーションの結果から,圧縮過程にお ける空間電荷効果の影響を実験的に観察するために は、現状のビーム電流値の 100 倍程度が必要である と考えられる.また,加速ギャップ長も考慮に入れ て速度変調電圧波形を設計する必要があることが分 かった.

参考文献

- [1] 富井正和, 菊池崇志, 中島充夫, 堀岡一彦, "荷電粒 子ビームのバンチングに伴うエミッタンス成長", 日 本物理学会 2010 年秋季大会, 23aQJ-4
- [2] K. Horioka, et al., "Beam Dynamics Studies in High-Flux Ion Injectors and During Longitudinal Bunch Compression for High Power Ion Acceleration", 18th International Symposium on Heavy Ion Inertial Fusion (HIF2010), Darmstadt, August-September 2010, TUS-0404
- [3] M. Reiser, Theory and Design of Charged Particle Beams (Wiley, 1994)
- [4] R.W. Hockney and J.W. Eastwood, Computer Simulation using Particles (IOP publishing, 1988)
- [5] A. Namprom, T. Wiboonphon, T. Sasaki, T. Kikuchi, and Nob. Harada, "Numerical Study for Electron Beam Dynamics in Compact Simulator for Heavy Ion Inertial Fusion", 3rd Euro-Asian Pulsed Power Conference / 18th International Conference on High-Power Particle Beams EAPPC-BEAMS 2010, Jeju, Korea, October 10-14, 2010, MoB3-5, p.108