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Abstract

Coherent synchrotron radiation (CSR) fields are gener-
ated when a bunched beam moves along a curved trajec-
tory. A new code, named CSRZ, was developed using fi-
nite difference method to calculate the longitudinal CSR
impedance for a beam moving along a curved chamber.
The method adopted in our code was originated by T. Agoh
and K. Yokoya [1]. It solves the parabolic equation in the
frequency domain in a curvilinear coordinate system. In
our studies, the chamber has uniform rectangular cross-
section along the beam trajectory, which is the same as that
in [1]. But the curvature of the beam trajectory is freed, and
then we can investigate the CSR impedance of a single or
a series of bending magnets. The calculation results indi-
cate that the shielding effect due to outer chamber wall can
be well explained by a simple optical approximation model
at high frequencies. With an approximation of a wiggling
chamber inside a wiggler, the coherent wiggler radiation
(CWR) impedance has also been studied. Due to cham-
ber shielding, the CWR impedance exhibits narrow peaks
at frequencies satisfying the resonant conditions.

INTRODUCTION

CSR generated by an ultra-relativistic beam moving in a
toroidal chamber has been studied extensively. The steady-
state CSR in free space was addressed in [2, 3]. The tran-
sient effect in free space was studied in [4]. The steady-
state CSR in a rectangular toroidal chamber was also well
understood [5, 6, 7]. The steady-state CSR between paral-
lel plates has been studied in [8].

For a single bending magnet with a vacuum chamber, T.
Agoh, G. Stupakov, et al. have developed different methods
to calculate the CSR impedance of a single magnet [1, 9].
This paper follows Agoh and Yokoya’s method [1] to cal-
culate CSR generated by a beam moving along an arbi-
trary trajectory. The trajectory can be generated by a single
bending magnet (see Fig. 1(a)), a series of bending magnets
(extending the chamber of Fig. 1(a) by adding more curved
sections), or by a wiggler (or an undulator) (see Fig. 1(b)).
At present, we assume the chamber has an uniform rectan-
gular cross-section along the beam trajectory. To close the
problem, two long straight sections are added before the
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entrance and after the exit of the chamber. We continue the
work presented in [1, 9] and do investigations in the follow
aspects: 1) the features of longitudinal CSR impedance in a
single bending magnet; 2) Optical approximation of CSR;
3) the longitudinal CWR impedance of a wiggler.

(a) Chamber in a single bending magnet

(b) Chamber in a wiggler

Figure 1: The geometries of the curved chamber for a sin-
gle bending magnet and a wiggler. A infinitely long straight
chamber is connected after the exit of the curved chamber.
The beam moves along the curved line with arrows. The
origin of the coordinate system coincides with the beam
orbit.

PROBLEM STATEMENT
The fundamental equation adopted in our studies of CSR

is the parabolic equation in the frequency domain in a
curvilinear coordinate with the origin on the beam trajec-
tory [1, 10]

∂ ~E⊥
∂s

=
i

2k

(
∇2
⊥
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1
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~E⊥

)
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where ~E⊥ is the transverse electric field, and R(s) is the
s-dependent bending radius along the beam orbit. ε0 is the
vacuum permittivity. The beam is assumed to be rigid, i.e.
the beam charge density ρ0 does not vary along s.

With paraxial approximation [1], the longitudinal elec-
tric field is a byproduct of the transverse fields and approx-
imated as,

Es =
i

k

(
∇⊥ · ~E⊥ − µ0cJs

)
, (2)
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where µ0 is the vacuum permeability, c is the speed of light
in vacuum, and Js = ρ0c is the current density. The de-
tailed derivation of the above equations can be found in
Refs. [10, 1]. We will not discuss the validity of these
equations either, because it has been well addressed in
Refs. [9, 7].

Equation (1) also describes the field evolution in a
straight chamber where the inverse bending radius is zero

∂ ~E⊥
∂s

=
i

2k

(
∇2
⊥
~E⊥ −

1

ε0
∇⊥ρ0

)
. (3)

In our calculations, the beam has a point charge form in
the longitudinal direction and Gaussian distribution in the
transverse directions. Then the longitudinal impedance is
calculated by directly integrating Es over s

Z‖(k) = −1

q

∫ ∞
0

Es(xc, yc)ds (4)

where (xc, yc) denotes the center of the beam in the trans-
verse x−y plane. The appearance of the minus sign in
Eq.(4) is due to the convention of the beam instability for-
malism.

The numerical algorithms adopted in our work are
adapted from the mesh methods originally presented in [1].
We start by dividing the rectangular domain (0, a)× (0, b)
in the x−y plane into an equidistant M × N mesh with
step sizes ∆x = a/M and ∆y = b/N in the x and y direc-
tions, respectively. The grid is shown in the solid lines of
Fig. 2. The numerical techniques will not be discussed in
this paper. The readers are referred to [1, 11] for details.
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Figure 2: Staggered grid definition with ghost points out-
side the boundary of the chamber. The positions of various
field components are shown. Constant spacing in the x and
y directions is assumed.

NUMERICAL RESULTS
In this section, we present a few examples of calculating

the longitudinal CSR and CWR impedances. In all these
calculations, the beam is assume to move along the central
line of the curved chamber, i.e. xc = a/2, yc = b/2.

Single bending magnet
For the first example, we investigate the influence of the

magnet length on the longitudinal CSR impedance. We

choose bending radius R = 5 m, chamber cross-section di-
mensions a = 6 cm, b = 3 cm. The magnet length is varied
as Lb = 0.5, 2, 8 m. The impedance results are shown in
Fig. 3. In the same figures, we also plot the results given by
the parallel plates model in solid black lines [1]. And the
corresponding wake potentials with a short bunch of rms
length σz = 0.5 mm are given in Fig. 4. WhenLb = 0.5 m,
which indicates a short curved chamber, the impedance is
very smooth. When the curved chamber gets longer, the
impedance becomes fluctuating with an interval of around
1.3 mm−1 in wavenumber and eventually results in a series
of resonant peaks. This observation clearly indicates that
the CSR impedance is actually related to the eigenmodes
of the curved chamber [10]. When the curved chamber is
long enough, some specific modes which fulfill the phase
matching condition can be strongly excited by the beam
and become dominant in the radiation field.
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(a) Real part (The purple and black dashed lines denote Ex

and Ey modes with n = 1, respectively.)
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Figure 3: CSR impedance for a single bending magnet with
R = 5 m and varied length of the curved chamber Lb =
0.5, 2, 8 m. The dimensions of the chamber cross-section
are a = 6 cm, and b = 3 cm. The impedances have been
normalized by the length of the curved chamber. Blue solid
lines: Lb = 0.5 m; red solid lines: Lb = 2 m; green dashed
lines: Lb = 8 m; black solid lines: parallel plates model.

One can compare the wavenumbers at the resonant peaks
in Fig. 3(a) with the analytical predictions which are avail-
able in Refs. [7, 6, 10]. According to [7], the resonance
peaks should appear at wavenumbers of

kmn =
nπ

b

√
R

xb
Υ

(
b(m± 0.25)

nxb

)
, (5)

where the integer indices m and n denote the individual
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Figure 4: Short-bunch wake potentials due to CSR in a sin-
gle bending magnet with R = 5 m and varied length of
the curved chamber Lb = 0.5, 2, 8 m. The dimensions of
the chamber cross-section are a = 6 cm, and b = 3 cm.
The gaussian bunch length σz = 0.5 mm with bunch head
to the left side. The wake potentials have been normal-
ized by the length of the curved chamber. Blue solid lines:
Lb = 0.5 m; red solid lines: Lb = 2 m; green dashed lines:
Lb = 8 m; black solid lines: parallel plates model.

mode of the curved chamber and xb is the distance from
the beam orbit to the outer wall in the horizontal plane. The
plus sign in Eq.(5) indicates Ex modes in which Ey = 0
and m = 0, 1, 2, 3, ...; the minus sign indicates Ey modes
in which Ex = 0 and m = 1, 2, 3, .... According to [7], n
must be odd and n = 1, 3, 5, .... Finally, Υ(r) is defined by

Υ(r) =

(√1 +
r2

3
+ 1

) 1
3

−

(√
1 +

r2

3
− 1

) 1
3

−
3
2

.

(6)
When r is large, Υ(r) can be approximated by 3r/23/2 [7].
It implies that the resonance peaks in the CSR impedance
are almost equally spaced along the wavenumber axis.
The resonances are indicated by vertical dashed lines in
Fig. 3(a). It turns out that they agree well with the observed
peaks from numerical calculations.

As stated in [7, 9], when the aspect ratio of the curved
chamber a/b is larger than 2, the shielding of the side walls
can be neglected and the parallel plates model is a good ap-
proximation for a long bending magnet. This criteria works
well in the low frequency region with k < kth which was
proved in [7]. Here kth is the shielding threshold defined
by [7]

kth = π

√
R

b3
. (7)

Our calculations do agree with this criteria. On the con-
trary, in the high frequency region, the CSR impedance
may significantly differ from the parallel plates model and
exhibit fluctuations and even narrow resonance peaks for a
long magnet. A geometrical explanation for this observa-
tion was proposed in Ref. [12] as illustrated in Fig. 5. The
CSR field is radiated in the direction tangent to the beam
trajectory when a beam enters the curved chamber. The
outer wall plays a role of mirror and reflects the field back
to the beam. If the curved chamber is long enough, the re-

flected field can accumulate and become significant. The
geometrical picture of CSR suggests a critical length of

Lc = 2Rθc ≈ 2
√

2Rxb, (8)

for the bending magnet. Here θc = ArcCos (R/(R+ xb))
≈
√

2xb/R. If Lb � Lc, some specific modes can be
strongly excited and results in the fluctuations or resonant
peaks in the CSR impedance. If L ≤ Lc, such fluctuations
will be negligible. But if L� Lc, transient effect will also
become important. The critical length indicates a length
when the reflection of the outer wall becomes important.
But Lc does not depends on the aspect ratio of the chamber
cross-section. Therefore, the condition of neglecting side-
wall shielding, i.e. L ≤ Lc, can be a supplement to the
criteria of a/b ≥ 2 which only applies at low frequency
limit, i.e. k < kth.

R
Θc

Figure 5: CSR reflected by the outer wall of the beam
pipe. The beam starts to radiate fields at the entrance of
the curved chamber. The dashed curve without arrows on it
denotes the beam orbit. The arrowed dashed lines represent
the direction of the radiation fields.

Similar to optical approximation in the theory of geomet-
ric impedance [13], the Lc defined by Eq. (8) can also be
interpreted as a catch-up distance over which the CSR, gen-
erated by the head of a beam, reflects from the outer wall
and reaches the beam tail at length ∆s behind the head. It’s
easy to calculate ∆s from the geometry shown in Fig. 5,
and the result is [12]

∆s = 2R(Tan(θc)− θc) ≈
4

3

√
2x3b
R
. (9)

The quantity ∆s corresponds to a modulation frequency
of [12]

∆k =
2π

∆s
≈ 3π

2

√
R

2x3b
. (10)

It turns out that ∆k = k(m+1)n − kmn is exactly the dis-
tance between adjacent resonances for the same vertical in-
dex n and large argument r in Eq.(6). When comparing ∆s
with the bunch length σz , one can find another condition
of neglecting outer-wall shielding effect in evaluating CSR
induced instability, i.e. ∆s � σz . Namely, this condition

Proceedings of the 8th Annual Meeting of Particle Accelerator Society of Japan (August 1-3, 2011, Tsukuba, Japan) 

- 1112 - 



says that the reflected CSR fields from the outer wall can
never catch up with the beam tail and thus has no influence
on the beam in total.

One can check Eqs.(9) and (10) by applying them to the
examples depicted in Fig. 3(a). ∆k = 1.4 mm−1 is close
to the observed value of 1.3 mm−1. ∆s = 4.4 mm−1 is
roughly the distance at which the first peak appears in the
tail part of the wake potential in Fig. 4. Since the bunch
length σz = 0.5 mm is much smaller than ∆s, the ampli-
tude of the wake potential in the vicinity of the beam is
almost independent of magnet length. Thus, one can con-
clude that the outer-wall shielding mainly impose effect in
the tail part of CSR wake.

CWR in a wiggler

Next we present a wiggler example where the oscilla-
tions of the beam are confined to the horizontal plane. We
assumed the applicable conditions as: wiggler parameter
K � 1 andK/γ � 1 where γ is the relativistic factor. The
beam traversing through the wiggler undergoes sinusoidal
motion, to first-order approximation. Thus the curvature of
the beam orbit can be approximated by a cosine function as
following:

R−1(s) = R−10 cos(kws), (11)

where R−10 is the maximum curvature and kw is the
wavenumber of the wiggler field.

Since we have assumed that the chamber cross-section
is uniform along the beam orbit, the chamber inside the
wiggler is modeled as a “wiggling” one in our calculations.
The effect of a wiggling chamber was well discussed and
compared with analytically obtained results in Ref. [14].
It was found that in the case of large aspect ratio, a wig-
gling chamber is a good approximation. For exemplifica-
tion of our aproach, we set the parameters of a wiggler as:
maximum bending radius R0 = 100 m and magnetic field
wavelength λw = 2π/kw = 1 m, and the number of peri-
ods Nw = 10. The chamber width and height are set to be
a = 10 cm and b = 2 cm. The results are shown in Fig. 6.
The wake potentials with rms bunch length of 0.5 mm cor-
responding to the impedances are plotted in Fig. 7. It turns
out that the CWR with chamber shielding can differ re-
markably from the free-space model [15].

By enlarging the chamber height, we can test the shield-
ing effect of up- and down-side chamber walls. This is
demonstrated in Figs. 8 and 9. In these calculations, the
chamber height is varied as b = 2, 5, 10 cm and all other
parameters are kept the same as in the previous example.
Both the impedance and wake potential tend to be close to
that of free-space model while the chamber height is en-
larged.

In [14], the real part impedance in a rectangular chamber
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Figure 6: CWR impedance of a wiggler. The blue lines are
numerical results. The dashed red line and dashed green
lines are given by Eq.(12) and Eq.(15), respectively.
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Figure 7: Short-bunch wake potentials due to CWR in a
wiggler. The gaussian bunch length σz = 0.5 mm with
bunch head to the left side. Blue solid line: with shielding
of vacuum chamber; Green dashed line: free-space model.

was calculated analytically using mode expansion method

Re Z‖(k) =
4Z0

abR2
0

∞∑
m=0

∞∑
n=1

k

(1 + δm0)kz

sin2 ((k − kz − kw)Lw/2)

(k − kz)2 − k2w
, (12)

where kz =
√
k2 − α2

mn with αmn =
√
k2x + k2y , kx =

mπ/a and ky = nπ/b. Lw = Nw(2π/kw) is the total
length of the wiggler. The summation in Eq.(12) goes over
the even values of m and the odd values of n. Equation
(12) also indicates the resonance condition

k − kz − kw = 0, (13)
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Figure 8: CWR impedance of a wiggler with b =
2, 5, 10 cm. Blue solid lines: b = 2 cm; red dashed lines:
b = 5 cm; green dashed lines: b = 10 cm; black solid lines:
free-space model.
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Figure 9: Short-bunch wake potentials due to CWR in a
wiggler with b = 2, 5, 10 cm. The gaussian bunch length
σz = 0.5 mm with bunch head to the left side. Blue solid
lines: b = 2 cm; red dashed lines: b = 5 cm; green dashed
lines: b = 10 cm; black solid lines: free-space model.

which shows that the resonant peaks in impedance should
appear at

kmn =
α2
mn + k2w

2kw
. (14)

The resonant peaks in Fig.6(a) do agree with the above
equation. The impedance for a wiggler in free space is
given in [15]

Z‖(k) =
1

4
Z0Lwk

kw
k0

(
1− 2i

π

(
log

4k

k0
+ γE

))
, (15)

where k0 = 4k3wR
2
0 is the fundamental radiation wavenum-

ber with wiggler parameter K � 1 and γE ≈ 0.577 is the

Euler constant. One sees that the numerical results again
agree well with the analytic formula Eq.(12) but disagree
with Eq.(15). Specially, the imaginary part does not show
the property of linear slope in the limit of low frequency
which is predicted by the free space model.

SUMMARY
In this paper we presented the numerical calculations of

the longitudinal CSR impedance for a beam moving in an
arbitrarily curved chamber. The CSRZ code was used to in-
vestigate the properties of CSR impedance of a single bend-
ing magnet. It turns out that the magnet length, in addition
to the chamber aspect ratio, may also play an important
role in defining the structure of CSR impedance. For a long
magnet, the shielding effect of the outer wall can be well
understood using an optical approximation model. CWR
of a wiggler was also studied with a tiny approximation
in modeling the vacuum chamber. With shielding of the
chamber considered, the CWR impedance and wake po-
tential of a wiggler might be quite different from the free-
space model. This observation agree with an independent
analytic approach.

The author D.Z. would like to thank K. Yokoya, T. Agoh,
G. Stupakov and Y.H. Chin for valuable discussions.
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