SIMULATION STUDY ON BEAMLOSS AT J-PARC LINAC BY USING GEANT4

Tomofumi Maruta[#] J-PARC Center, JAEA 2-4 Shirakata-Shirane, Tokai-mura, Ibaraki, 319-1195, JAPAN

Abstract

Suppression of beamloss is one of the most important issues to operate an accelerator stably for a long term, because beamloss makes accelerator components radioactivated and a high radioactivation becomes an obstacle for maintenance works by hand. One of the major origins of the beamloss is the scattering process of beam particles (H⁻ for J-PARC Linac) to residual gases inside the beam duct. For the study on the beamloss coming from the H⁻ scattering process, I developed a library that can handle H⁻ scattering process by Geant4 toolkit. In this proceedings, I will introduce parameters, especially for mass and cross section, in the library and show some results of the Geant4 simulation with the library.

Geant4 による J-PARC リニアックのビームロスの研究

1. はじめに

J-PARC 加速器施設は MW クラスの大強度陽子加 速器施設である。線形加速器(リニアック)は J-PARC 加速器施設の初段加速器である。イオン源で生成さ れた 50keV の負電荷水素イオン(H : 陽子1個に電 子 2 個が束縛されたイオン)を 181MeV まで加速し、 3GeV RCS に 25Hz で供給する。現在、供用運転中 のビーム強度は約 200kW(ビーム電流 15mA)であり、 設計値の 1MW 達成に向けて、徐々にビーム強度の 向上を図っている。

大強度陽子加速器にとって重要な課題のひとつは 加速器機器の放射化の抑制である。特に 100MeV 以 上の陽子や重粒子が物質に衝突すると、強い相互作 用によりハドロンシャワーを起こし、大量の2次粒 子を発生させるため、機器の残留放射線が高くなる。 高い残留放射線は手作業によるメンテナンスに時間 的な制約を与えるので、加速器の安定的な運用にと り大きな障害になる。手作業によるメンテナンス性 を維持できる残留放射線量の上限は 1mSv/h と言わ れている。一方、現在の残留放射線量は、昨年 12 月 27 日に行われたリニアックトンネル内の測定に よると、デバンチャー2の直前にあるゲートバルブ が一番高く、0.40mSv/h。次に高いのがデバンチャー 1入口で 0.19mSv/h だった。これらの測定結果は指 標の半分以下だが、今後ビーム強度が高くなるに従 い、残留放射線も高くなると予想される。したがっ てビームロスの原因を究明し、残留放射線の抑制に 努めなければならない。原因究明にとって、シミュ レーションツールは強力な手段となる。

放射化はビーム粒子が何らかの原因により通常の 軌道から離れ、やがて加速器機器に衝突することに より発生する。軌道から外れる原因はいくつかある が、J-PARC リニアックで現在考えられている最大 の要因はビーム粒子と残留ガスの散乱である。H は 散乱すると電荷0の H⁰になる。散乱は物理事象な

[#]tmaruta_at_post.j-parc.jp "_at_"を"@"に置き換えること。

ので、シミュレーションは粒子の質量、電荷、散乱 断面積等の物理量に基づき行わなければならない。 その条件を満たす有力なツールの一つに Geant4 ツールキットがある。

Geant4 ツールキット^{III}は KEK や欧州原子核研究 機構(CERN)が中心となり、国際共同で開発が進 むシミュレーションキットである。モンテカルロ法 により粒子の物理発展を step-by-step に計算する。 Geant4 内には様々な物理量や散乱モデル等が、過去 の実験結果・理論計算を基に定義されている。した がって散乱起因のビームロスの研究に最適なツール の1つである。しかしながら Geant4 では H/H⁰が定 義されていないので、リニアックの加速段階のシ ミュレーションが困難だった。

本発表では、わたしが Geant4 でリニアックのシ ミュレーションを行うために開発した H/H⁰のライ ブラリについて報告する。特に散乱断面積(σ)の定 義について説明する。またライブラリが断面積の測 定結果をどの程度再現するか示す。また、そのライ ブラリを使用して SDTL 入射点から ARC セクショ ン手前の直線部 (~250m) のシミュレーションを 行ったので、その結果について報告する。

2. Geant4 用 H^-/H^0 ライブラリ

Geant4 で定義されていない粒子を使用するために は、目的に応じて物理量を定義する必要がある。本 研究の目的は散乱事象のシミュレーションであり、 そのために最低限必要な物理量(質量、電荷、散乱 チャンネルおよび各チャンネルの σ)を定義した。 散乱チャンネルは H→H⁰+eと H⁰→H⁺+eを考慮した。 Hの散乱には H→H⁺+2eもあるが、 σ が他の2つと 比較して2桁以上小さいので、ここでは考慮しない。 次に質量と σ について説明する。

すでに述べたように、H⁻/H⁰は H⁺に2個ないし 1 個の電子が束縛されたイオンである。各電子の束縛 エネルギーはよくわかっており、13.6eV、0.75eV で ある。したがってライブラリでは、各イオンの質量

図1:参考論文に記載されている H/H⁰の散乱断面積の図^[2,3]に、製作したライブラリを使用して Geant4 から導出した散乱断面積を重ね合わせた。黒点は測定値、実線が理論計算。黒点以外は Geant4 の計算結 果である。図中の σ_{ij} の意味は本文参照。(a):炭素薄膜に Hを照射して測定した $\sigma_{-1,0}$ + $\sigma_{-1,1}$ と $\sigma_{0,1}$ と H-の エネルギーの相関。(b): 200MeV の Hビームを 10ug/cm²から 200ug/cm²厚の複数の炭素薄膜に照射し、 通過後の H/H⁰/H⁺の割合。(c):炭素、窒素、アルゴンの σ_{-10} のエネルギー依存性。

に H⁺と e⁻の質量の和から電子の束縛エネルギーを差 し引いた値を定義した。

 σ は実験結果等を参考に、入射粒子の運動エネル ギー(E)と物質の原子番号(Z)を独立変数に持つ関数 σ (E,Z)として定義した。まず H ビームを炭素薄膜に 照射した実験結果^[2,3]から、E に依存する項を求めた。 次に他の物質の測定結果^[3,4]から標的の Z に依存項を 求めて σ (E)を σ (E,Z)に拡張した。

図1に参考論文中に示された σ と、ライブラリを 使用して Geant4 で求めた σ を示す。図中の σ_{ij} は、 Hⁱが Hⁱになる σ を示している。各図において、黒点 は測定結果、実線は理論計算、黒色以外の点は Geant4 の計算結果である。(a)、(b)は標的に炭素を 用いた場合の E および標的厚依存性であり、両方と も Geant4 は実験結果を良く再現している。また(c) は炭素標的に加えて、窒素とアルゴン標的の比較だ が、これらに関しても一致しており、Z による補正 がよく機能していると考えられる。

3. ビームロスシミュレーションの結果

次に製作したライブラリを使用して、ビームロス のシミュレーションを行ったので、その結果につい て報告する。概要は以下の通りである。

- 区間: SDTL 入射点(E=50MeV)からデバン チャー2 下流(181MeV)の約 250m。
- 構成要素:図面等を基に、ビームダクト、Q磁石、RF空洞の形状と材質を定義。各要素を設計位置に配置した。また、ビームダクト内は10⁻⁵Paの一様な窒素ガスで満たした。
- Q磁石の磁場:磁場勾配は現在の供用運転と同じ 15mA の設計値を使用した。また分布は PMQモデル^[5]を採用した。

- 加速電場:すべての加速ギャップ間に 324MHz の電場を発生させた。電場分布はビーム軸方 向のみに成分を持つ理想的な電場である。各 電場の初期位相と振幅は、位相スキャン法に より初期位相と空洞出口のビームエネルギー の相関を求め、同期位相が設計値の-27°にな るように設定した。
- Hビームの初期分布:15mA 運転用のパラメー タから Trace3D^[6]で SDTL 入射点の twiss parameter を求め、それを再現するように生成 した。ビームを実空間に射影した時の分布は ガウス関数である。Hの発生数は 7×10⁵ 個で ある。

図2:ビーム軸上の H[•]の散乱点と H[•]の散乱点の 相関。

図3:加速器運転中の BLM 信号(上)と Geant4 で求めた H⁰ 散乱位置(下)の比較。

散乱断面積:散乱事象の収集効率を上げるため、σ₋₁₀を1000倍にした。従って散乱事象数は7×10⁸個のHと同等である。

図2に Hが散乱して H⁰が発生したビーム軸上の 位置(横軸) とその H⁰が散乱した位置(縦軸)の 相関を示す。SDTL 上流で散乱数が多いのは、E が 高くなるにつれて、 σ が急激に小さくなるためであ る。Hと H⁰の位置の相関を比較すると、H⁰が H よ り約 30m 下流側で散乱していることが分かる。これ は H⁰が生成点から真空ダクトに衝突するまでに約 30m 飛行していることを意味している。従ってビー ムロスモニター(BLM)は設置場所よりも約 30m 上流 で散乱した事象を観測している。

分布では 145m、160m、260m の辺りに H⁰ が散乱 していない領域がある。これはビームダクト径が大 きくなっている場所と一致する。ダクト径が太くな ると、その上流側の細いダクトの陰になり H⁰ が衝 突しないためである。一方 150m と 270m で横方向 に赤い筋がある。ここはそれぞれデバンチャー1 と デバンチャー2 に対応する。これらの空洞はもとも と SDTL の最下流部の2空洞として設計されたため、

図4:ビームロスによりビームダクトから出てく る粒子の種類。ここでは陽子、中性子、電子、陽 電子、γ線、それ以外に分類した。

Drift Tube の内径がその上流のダクト径より細く なっており、そこに H⁰ が集中的に衝突していると 考えられる。

次に図3にビーム運転中の BLM の分布(上)と H⁰のビーム軸方向の散乱位置(下)を示す。SDTL セクションでは空洞内で発生した X 線を検出してい るので BLM 信号が全体的に大きい。下図で2カ所 鋭くピークになっているのは、先に述べたデバン チャー1、2の入口である。1章で述べたが、ビーム 運転終了後の残留放射線測定でも、この2カ所が高 くなっており、同じ傾向を示している。上下を比較 すると、位置はずれているが、それぞれ2区間でロ スが小さく、似た傾向を示している。BLM では MEBT2 と ACS 後半が小さく、一方 Geant4 では ACS 上流と L3BT 上流が小さい。両方とも Geant4 の方が 30m 程度下流側にシフトしている。原因は、 Geant4 では空間電荷効果を考慮していない。初期分 布が実際と異なる、など考えられる。

図4はビームダクトから出てくる粒子の位置と、 種類を示したものである。陽子に加えて、中性子が 全区間で発生していることがわかる。中性子は荷電 粒子と異なり、透過力が高いので、RF 空洞内で発 生したロスの検出に有効だと考えられる。2013 年夏 に予定される 400MeV 増強では、ACS セクションに 21 台の空洞が設置されるため、現在の BLM ではロ スの検出が難しくなる可能性が高い。したがって中 性子検出器の使用も検討の必要があると言える。

4. まとめと今後

Geant4 で Hおよび H⁰をシミュレーションするた めのライブラリを製作した。Geant4 簡単なシミュ レーションを実行し、散乱断面積が参考論文とよく 一致することを確認した。このライブラリを使用し シミュレーションではデバンチャー1 と 2 の入口付 近で H⁰ が集中的に衝突しており、これはビーム運 転後の残留放射線測定の結果と一致している。ビー ムダクト外のロス起因の粒子は陽子に加えて、中性 子もかなり多い。中性子は透過力が高いので、空洞 内のビームロスの検出に有効である。

今後は空間電荷効果やローレンツストリッピング 等をシミュレーションに組み込むとともに、残留放 射線の測定結果等と定量的な比較をおこなう。

参考文献

- [1] http://geant4.cern.ch
- [2] C. Webber and C. Hdjvat, IEEE Transaction on Nuclear Science, Vol. NS-26
- [3] H.Gillespie, Phys. Rev. A16 (1977) 943.
- [4] R.E. Shafer "Beam Loss from H-minus Stripping in the Residual Gas", LANSCE-1 Technical Note, LANSCE-1:99-085
- [5] K. Halbach, Nucl. Inst. Meth. 187 (1981) 109.
- [6] http://laacg.lanl.gov/laacg/services/download_trace.p html