Linac and Laser 2008 at University of Tokyo, Professional school

M. Uesaka^{1,A)}, K. Koyama^{A)}, A. Sakumi^{A)}, T. Ueda^{A)}, A. Yamazaki^{A)}, F. Sakamoto^{A)}, E. Hashimoto^{A)},

A. Maekawa^{A)}, T. Yamamoto^{A)}, T. Natsui^{A)}, K. Li^{A)}, Y. Taniguchi^{A)}, H. Taguchi^{A)}, K. Miyoshi^{A)}, K. Kanbe^{A)},

Y. Muroya^{A)}, Y. Katsumura^{A)}, T. Hosokai^{B)}, A. Zhidkov^{C)}, M. Yamamoto^{D)}, N. Nakamura^{D)}, E. Tanabe^{D)}

^{A)} Nuclear Professional School, School of Engineering, University of Tokyo

2-22 Shirane-shirakata, Tokai, Naka, Ibaraki, 319-1188, Japan

^{B)} Tokyo Institute of Technology

2-12-1 O-Okayama, Meguro-ku, Tokyo, 152-8550, Japan

^{C)} Central Research Institute of Electric Power Industry.

2-11-1, Iwado-kita, Komae, Tokyo 201-8511, Japan

^{D)} Accuthera Inc.

2-7-6 Kurigi, Asao, Kawasaki, Kanagawa 215-0033

Abstract

We have been developing a compact-sized cartridge-type cathode exchanging system installed in BNL-type IV photocathode RF gun. We propose the Na₂KSb cathode, which has the possibility to drive by visible light of 400 nm (violet range). We tested the cathode and obtained the quantum efficiency of 1% at the wavelength of 266nm. The lifetime of T1/2 is more than 100 hours surrounded at the vacuum pressure of $2*10^{-8}$ Torr.

We are also developing a compact Compton scattering X-ray source to apply to the medical application. X-band (11.424GHz) 3.5-cell thermionic cathode RF electron gun is adopted as an electron beam injector. We chose Nd: YAG laser which can switch a wavelength and energy (532 nm/ 1.4J, 1064nm/ 2J) as a photon source to collide the electron beam. New two key ideas are contained in a new gun. First, choke structure is adopted as an RF interceptor, which allows spring to have only to role as a stabilizer of the cathode rod, therefore stable operation will realize. Second, cylindrical waveguide is adopted as the coupler for feeding RF to the cavity. It also enables the gun to operate with few RF problems. In this presentation, we will report the details of new X-band thermionic cathode RF-gun and experimental results on cavity property measurement.

We are developing non-destructive testing (NDT) system with 9.4 GHz X-band Linac. This system adopts low power magnetron for RF source, so total size is very compact. Now, we start beam measurement, X-ray generation and X-ray imaging test. In this paper, we describe the detail result of these experiments.

東大原子力ライナック・レーザー施設現状報告2008

1. はじめに

東大原子力専攻では、Sバンドツインライナック、 レーザープラズマライナックXバンド医療用小型ラ イナックと非破壊検査用950keVライナックを設置し ている。

Sバンドツインライナックは全国共同利用マシン として、これまで同様、ピコ秒・サブピコ秒時間領 域の放射線化学実験[1]に用いられるとともに、医 療用小型加速器要素技術開発、極短パルス測定の為 の要素試験の利用が行われるようになった。

2. 共同利用状況

平成20年度は新規課題1つを含む合計11個の共同利 用課題が採択された。内、ビーム物理系4件、利用 系7件である。表1に課題一覧を示す。

3. Sバンドツインライナック

Na₂KSbは光電子増倍管で使われているカソードであり、400nmで最大の量子効率を誇り、Ti:Saレー ザーの2倍波で駆動可能である。図1 にカソードの 量子効率の波長依存性を示す。カソードのこのカ ソード材質をモリブデンベース上に生成し、フォト カソード RF電子銃にインストールし試験を行った。 試験では266nmの波長で寿命テストまで行った。

エージングののち量子効率が1%[2]であった。続いて寿命特性試験を行った。加速器の電子源として 使用していく場合、カソードの寿命が問題となって くる。寿命が短いカソードでは電流量の不安定性、 メンテナンス回数の増大が見込まれ、使用に不都合 が生じる。

¹ E-mail: uesaka@nuclear.jp

表1:平成20年度共同利用課題一覧

採番	テーマ名	代表者
L-1	水溶液の放射線効果の研究	勝村庸介(東京大学)
L-2	パルス&プローブ法を用いる超高速反応の研究	勝村庸介(東京大学)
L-3	天然高分子材料等の放射線化学反応機構	工藤久明(東京大学)
L-4	多結晶ルビー(アルミナ蛍光板)の発光特性	高橋浩之(東京大学)
L-5	高速応答シンチレーターの開発と性能評価	浅井圭介 (東北大学)
L-6	医療用小型加速器要素技術試験	浦川順治 (高エネ研)
L-7	高温・超臨界溶媒の放射線化学	勝村庸介(東京大学)
L-8	フォトカソードRF電子銃の高性能化	熊谷教孝 (JASRI/SPring 8
L-9	レーザープラズママルチビーム研究	上坂充 (東京大学)
L-10	単色エネルギー可変硬線源の応用研究	上坂充 (東京大学)
L-11	可搬型小型X線源を用いた非破壊検査応用研究	上坂充 (東京大学)

我々の装置の真空度は真空ポンプ付近で2*10⁻⁸Torr、端板後方のカソード挿入口で2*10⁻⁸Torrであった。RFガンキャビティは奥まった構造をしており、それより真空度が悪いのが見込まれる。カ ソードプラグ挿入後多数の放電が観測され、イオン ポンプにおいて4*10⁻⁸Torr以下に落ちることも多数 あった。そのような真空度における Na₂KSbカソー ドの寿命特性を図2 に示す。カソードの寿命が24時 間以内で急激におち0.5%まで減衰する時間は100時 間であった。その後量子効率の落ちが減速し、280 時間後に当初の1/5の量子効率(T(1/5))に到達、そ の後安定した。図6 にRFの印加時も示す。劣化が 加速器を止めた3日間での劣化が特に激しく、RF 印加によるものだけではないことがわかる。

4. レーザープラズマライナック

レーザープラズマ相互作用によって高エネルギー、 短パルス、低エミッタンス、単色な高品質電子ビー ムを生成する安定でコンパクトなレーザープラズマ 加速器を実現するために、東大12TWレーザーを用い てレーザープラズマカソードの研究を行っている。

レーザープラズマ電子源の現在の課題は安定性 とビーム品質の向上である。ガス標的のメインレー ザー進行方向軸に沿って外部磁場を印加する。発生 した電子の分布を下流に設置された蛍光スクリーン で観測する。磁場をオンオフすることで磁場の影響 を調べる。図3はスクリーン上での電子発生分布で ある。磁場(B=0)においては発散は約60mmと広がっ ている。磁場(B=0)においては発散は約60mmと広がっ ている。磁場(B=0.2T)においてはスクリーン上での 電子分布は3.6mmと指向性が劇的に向上する。また、 この際の電子発生はショットごとのばらつきが抑制 され、安定化される[3]

5. Xバンドライナック

5.1 コンプトン散乱単色X線源

医療応用を目指したコンプトン散乱単色X線源で は、電子銃カソード部分におけるRF遮断およびのタ ングステン製スプリング破損問題を解決するために, カソード部分にRFを遮断するチョーク構造を採用し た新規電子銃を設計した。図4に新規電子銃見取図 を示す。新規電子銃の設計に際しては、大きく2つ の改良点がある。第一に、カソードへのRF遮断構 造としてチョーク構造を採用したこと.第二に,カ プラ構造を従来の同軸構造を廃して、円形導波管構 造に変更したことである。従来の同軸導波路構造よ りも簡素な構造で、十分なRF供給が可能である。 カプラと空洞に現電子銃を用いて、チョーク構造を 導入したものによる試験を行った。低電力のRFを 電子銃に供給し、チョーク構造を用いても空洞内に RFが供給されることが確認された(図5) [4]。

5.2 非破壊検査ライナック

最大エネルギー950 keVのX-band Linacを用いた可 搬型非破壊検査装置の開発を行ってきている。

本装置の非破壊検査への応用として、インペラな どの回転機の回転を止めることなく同期を取り、リ アルタイム静止画取得できる装置としての応用も検 討している。図6に回転機リアルタイム撮像の概念 図を示す[5]。被写体がドライヤにおける撮像映像 を図7に示す。

6. 今後の展開

Sバンドライナックではマルチアルカリカソード の長寿命化を試みる。レーザープラズマライナック は、さらにプリプラズマ状態の制御と最適化を行い、 レーザープラズマカソードの高度化を目指す。単色 コンプトン散乱X線源では新規電子銃の特性を低電 力,高電力の各条件下で行い,単色X線源に導入す る予定である。非破壊検査ライナックでは電子ビー ム・X線の詳細測定ならびにX線撮像を行っていく。

参考文献

- [1] Y. Muroya, T. Watanabe, G. Wu, Xi. Li, T. Kobayasi, J. Sugahara, T. Ueda, M. Uesaka and Y. Katsumura, Radiation Physics and Chemistry, 60 (2001) pp. 307-312
- [2] A. Sakumi et al., "Comissioning of Alkali-antimonide photocathode at U-tokyo RF gun" 当学会で発表
- [3] A. Yamazaki et al., "Experimental study on femtosecond electron generation by laser plasma cathode." 当学会で発表
- [4]Y. Taniguchi et al., "Development of X-band Thermionic RF Electron Gun using Choke Structure." 当学会で発表
- [5] T. Yamamoto et al., "X-RAY IMAGING TEST USING 950 KEV X-BAND LINAC BASED NDT SYSTEM" 当学会で発表

図7:イメージングプレートによる取得画像