Status of the RIKEN Superconducting Ring Cyclotron

Hiroki Okuno^{1,A)}, Jun-ichi Ohnishi ^{A)}, Kazunari Yamada ^{A)}, Makoto Hamanaka ^{B)}, Nobuhisa Fukunishi ^{A)}, Makoto Nagase ^{A)}, Kumio Ikegami ^{A)}, Hiroo Hasebe ^{A)}, Takeshi Maie ^{A)}, Masayuki Kase ^{A)}, Akira Goto ^{A)}, and Yasushige Yano ^{A)}

A) RIKEN, Nishina Center for Accelerator-based Science One of Accelerator Facilities
2-1 Hirosawa, Wako, Saitama, 351-0198

B) SHI Accelerator Service
5-9-11, Kita-shinagawa, Shinagawa, Tokyo, 141-8686

Abstract

RIKEN Nishina Research Center for Accelerator-based Science is constructing the Radioactive Isotope Beam Factory (RIBF), which can produce the world's most intense RI beams. The Superconducting Ring Cyclotron (SRC) is the final stage booster for the RIBF accelerator complex. The superconducting sector magnets are the key components for the realization of the SRC. The assembling at due site was completed on August of 2005. After the completion the series of cool-down and excitation tests were performed until the middle of June, 2006, including field measurements for two months. The cold mass of about 140 ton weight was successfully cooled-down and all the coils were fully excited without coil quenching. This magnet system was checked from the various points of view: magnetic force, coil protection, magnetic field and operation of the He refrigerator. The test results show that the magnet works as designed. The beam commissioning scheduled in December of 2006 after the completion of the instillations of the rf-system, the vacuum system and the beam diagnosis.

理研超伝導リングサイクロトロンの現状報告

1.はじめに

現在、理化学研究所では、RIビームファクトリー計画(RIBF)の建設が順調に進行中である。[1]このRIBFは次世代のRIビーム施設として、世界で最も強度のあるRIビームを全元素領域で発生させる事が出来る。RIビームは、安定なイオンビームの入射核破砕反応の産物として出来るため、この様な施設には、大変強力な重イオン加速器が必要不可欠であるが、これを実現させるために、RIBFでは、fRC,IRC,SRC の3つのリングサイクロトロンを現存する加速

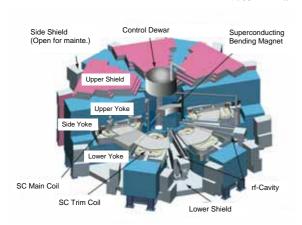


図1: SRC鳥瞰図

器複合系の後段加速器として、新たに建設してきた。特に図1に示すSRCは世界初の超伝導リングサイクロトロンであり、K値としても最高の2500MeVとなるものであり、総重量8300トン、高さ8m、直径19mの巨大なものである。6基の超伝導のセクター電磁石はセクター角25度で、最大3.8Tの磁場を加速領域に生成する。加速は4台の加速共振器と1台のフラットトップ共振器で行う。SRCの中心側と外周側には、静電及び磁気チャンネルが設置され、ビームの入射と出射が行われる。このサイクロトロンの特徴的な所は、通常はオープンとなっているセクター

図2: SRC最近の写真

18

¹ E-mail: okuno@riken.jp

電磁石間のバレイ領域も約1mの鉄の板で囲われている事である。これにより磁気的及び放射線的なシールドが付加され、超伝導コイルから外部への漏洩磁場が減ると供に、要求磁場を実現するために必要な起磁力も低減する事が可能である。

図 2 に現在のSRCの様子を示す。[2,3]2003年3月 に全てのパーツが完成し、2004年1月から本格的に 組立を開始した。2005年8月に超伝導磁石部分の組 み上げが全て終了した。

2.超伝導セクター電磁石の構造

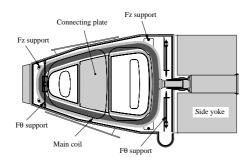


図3: SRC超伝導セクター電磁石の 断面図と平面図

図3に超伝導セクター電磁石の断面図と平面図を 示す。 1 対の主コイルは周長が約10mで、8mm×15mm のアルミ安定化されたNb-Ti 超伝導ケーブルが396 ターンソレノイド巻きされている。コイルの冷却は コイル容器で作られた液体ヘリウムのBath の中で 冷却される。この超伝導線に5000Aの電流を流して、 1セクター辺り約4MATの起磁力を生成する。励磁し た際には、このコイルの長手部分にメーター当たり、 260トンの電磁力が掛かるため、その力を支持する 為に、低温の連結板によって支持される。サイクロ トロンの等時性磁場を生成させるための超伝導トリ ムコイルは薄くて広いコイルであり、メインコイル に取り付けられる。色々な加速条件に対応するため に、4セットのコイルが用意されており、各電流値 が自由に変える事が出来る。コイルの最大電流は 3000Aであり、ダブルパンケーキ巻きが採用されて おり、冷却は間接冷却が採用されている。これらの 超伝導コイルは組上げられた後、輻射シールドによ

表 1 冷却励磁試験項目

Date	Events
05/8/30 -	Purification (N2:< 0.5ppm)
05/9/17	
05/9/19 -	Cool-down
05/10/13	Main coils became superconducting state.
1:00AM	
05/10/16	Level of liquid helium reach up to the operation level.
05/10/21	Excitation test started. (Imain =100A)
05/10/27	Excitation test (Imain=1000 A, Itrim=1000A)
05/10/31	Exciation test (Imain = 3000 A, Itrim = 3200 A (Max.))
05/11/6	Excitation test (Imain = 5000 A (Max.))
05/11/7	Exciation test (Imain = 5000 A, Itrim = 3000 A)
05/11/8	Trouble due to a leak from He vessel
06/3/16	The 2 nd cool-down
06/4/15	Full excitation again
06/4/17-	Field Measurement
06/6/14	
06/6/14	Fast Shutdown test from full excitation

り囲われ、クライオスタットの中に入る。室温部分と極低温部分を分けるために、コイルは、合計17本の断熱支持棒で支持される。

3.冷却励磁試験

超伝導磁石部の組上げ完了後、から2006年の6月 まで、超伝導磁石の冷却励磁試験を行なった。表1 に起きた事象を示す。まず、運転中のヘリウム冷凍 機内でのトラブルのリスクを下げる為に、系内のへ リウム濃度を0.5ppm 以下まで下げる運転を行ない、 2005年9月19日から冷却運転を開始した。冷却曲線 を図4に示す。冷却は順調に進行して、10月13日に は全ての主コイルが超伝導状態に転移した。その後 貯液を行い、10月21日より励磁試験を行ない、11月 7日には全コイルの定格励磁に成功した。その翌朝 ヘリウムリークのトラブルが生じ、試験は3月16日 まで停止せざるを得なかったが、4月15日には再励 磁に成功して、4月17日から約二ヶ月間磁場測定を 行なった。最後に定格励磁から高速遮断試験をおこ ない、クエンチ等の緊急事態の時においても、コイ ルに損傷を与えることなく、蓄積エネルギーを回収 できることを確かめた。励磁試験、磁場測定の詳細 データーについては、理研の大西純一氏より報告が ある。[4]

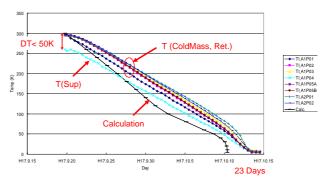


図4: SRCの初期冷却曲線

4.磁石系以外の工事

上記の通り、電磁石系の工事、試験等は順調に終 了し、現在(2006年8月)は高周波加速系、ビーム 真空系、ビーム診断系の設置工事が行なわれている。 SRCの加速共振器4台とフラットトップ共振器1台 は、6月24日の早朝に製作工場より到着した。RIBF 棟内に搬入後、立て起こし設置工事が順調に行なわ れており、工事の様子を図5に示す。共振器の芯出 し後に、セクター電磁石側のビーム真空のフランジ と共振器側のビーム真空のフランジを接続する作業 が行なわれた。図6にその構造を示す。ビーム真空 を作るために磁石側のクライオスタットと共振器を 連結金具で結合して、エクスパンジョンシールを膨 らまして、0リングでシールすると言うもので、構 造的には標準的なものであるが、ものが大きい事や 複数の会社が関与している事もあり、思った以上に 苦労した部分が多かった。

真空ポンプ、ビーム診断系の機器は現在設置中であり、10月中ごろから共振器の焼き出しを開始し12月のビームコミッショニングに間に合わせる予定である。

参考文献

- [1] Y. Yano, "RI Beam Factory Project at RIKEN", in Proc. 17th Int. Conf. on Cyclotrons and Their Applications, Tokyo, 2004, pp. 169-173.
- [2] A. Goto, *et al.*, "Sector Magnets for the RIKEN Superconducting Ring Cyclotron", *IEEE Trans. Appl. Supercond.*, vol. 14, No. 2, pp. 300-3005, June 2004.
- [3] H. Okuno, *et al.*, "Magnets for the RIKEN Superconducting Ring Cyclotron", *in Proc.* 17th Int. Conf. on Cyclotrons and Their Applications, Tokyo, 2004, pp. 373-377.
- [4]. J. Ohnishi, *et al.*, "Excitation Test and Magnetic Field Measurement of the Superconducting Ring Cyclotron", *in this proceedings*.

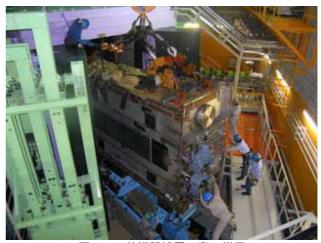


図5: SRC共振器設置工事の様子



図6: ビーム真空接続の構造