DSIGN OF A MOVILE SUPERCONDUCTING ACCERELATOR FOR POSITRON ANNIHILATION LIFETIME SPECTROSCOPY

Nagayasu Oshima^{A)}, Ryunosuke Kuroda^{A)}, Atsushi Kinomura^{A)}, Toshiyuki Ohdaira^{A)}, Hiroyuki Toyokawa^{A)},

Ryoichi Suzuki^{A)}, Noriyosu Hayashizaki^{B)}, Toshiyuki Hattori^{B)}

^{A)} National Institute of Advanced Industrial Science and Technology (AIST),

1-1-1 Umezono, Tsukuba, Ibaraki, 305-8568

^{B)} Tokyo Institute of Technology,

2-12-1 Ookayama, Meguro, Tokyo, 152-8550

Abstract

A design of a superconducting accelerator for a positron beam with energy of ~ 1 MeV for positron annihilation lifetime spectroscopy is proposed. The total system including a slow positron source can be extremely small (~ 2 m³) with an application of superconducting technology. Both a miniaturization and easy maintenance of the accelerator can be achieved by usage of a small liquidless refrigerator for cooling of a superconducting RF cavity. The operation duty cycle of the superconducting cavity is 10-100% which is two orders of magnitude larger than that of a normal conducting one. The required RF power to drive the system is only ~ 100 W, therefore a large-size klystron is not necessary. We expect that the new system can be compact and carried out for a fatigue diagnostics of various industrial materials, such as jet engines, reactor vessels, etc., which cannot be moved into a laboratory.

陽電子消滅寿命分光用移動型超伝導加速器の設計

1. はじめに

陽電子消滅寿命分光法は、ナノメートルサイズ以 下の格子欠陥等を観測する唯一の手法として知られ ており、様々な材料の物性評価や非破壊診断等に利 用されている^[1]。この陽電子寿命分光法を行うため には、陽電子を測定試料に入射する必用がるが、そ のために通常以下の2種類の方法を用いている。 つは、RI (²²Na) から放出する β +線を試料に入射す る方法であり、もう一つは短パルス化(200ps)低速 陽電子ビーム(0-30keV)を試料に入射する方法であ る。前者の方法では、薄膜に封じ込めたRI(密封線 源)を試料に直に接触させる必用があり、後者の方 法では、試料を真空中に保持する必用がある。した がって、極限環境下(高温・低温・高圧)におかれ た試料や、応力負荷状態にある試料、生きた生体試 料内部に陽電子を入射することは、RI保持や真空保 持の観点から非常に困難である。

上記のような試料に対しても寿命分光法を適用す る一つの方法は、高エネルギー(1MeVオーダー)短パ ルス化陽電子ビームを利用することである。1MeV程 度に加速された陽電子は、大気中に設置した試料に も、真空窓を透過させて照射することが可能であり、 RI保持膜の破断や真空劣化の問題を回避することが できる。なお、ビームを短パルス化する理由は、陽 電子の物質中へ入射時刻を良い精度で決定するため である。(陽電子寿命は、陽電子の試料打ち込み時 刻と、消滅ッ線の検出時刻の時間差で定義する。)

1990年以降、陽電子ビームを静電加速方式や常伝 導加速方式により、数MeV程度まで加速する装置が 開発された^[2]。静電方式では、陽電子ビームがDC ビームであるために、陽電子の材料への入射時刻の 決定精度が悪く、陽電子寿命測定を行うにはまだ問 題が多い。一方、常伝導方式では、運転稼働率 (duty cycle) が小さいことが予期される上、ク ライストロン等の周辺機器まで含めると装置も原理 的に大きくならざるをえず小型化(移動型)は不可 能である。

我々は、静電加速器や常伝導加速器が持つ上述し た技術的問題点を、超伝導加速器^[3]を利用する事で 解決できると見込んでいる。超伝導加速器は、常伝 導加速器よりもduty cycleをはるかに大きくでき、 陽電子寿命スペクトルの測定速度を上げるのに好都 合である。また、少ない高周波電力で高電界を達成 できるため、電源も小型固体アンプで良い。した がって、超伝導加速空洞の冷却系を小さくできれば、 移動型サイズにまで小型化できれば、配管等の運搬 不可能な構造物にも、装置を付近に移動させ、オン サイト非破壊検査を行うことができ、応用領域が格 段に拡がることが予想される。

我々は、システムの小型化とメンテナンス簡易化 を重要視しているため、超伝導加速器の冷却にヘリ ウム式恒温槽を採用せず、無冷媒小型冷凍機のみを 用いることを前提とし、陽電子寿命測定装置の設計 について検討した。

2. 陽電子寿命測定用小型加速器の設計

2.1 1MeV短パルス化陽電子発生装置

図1に考案した高エネルギー(1MeV)短パルス化陽

図1:1MeV短パルス化陽電子発生装置設計図

電子発生装置の全体図を示す。装置は大きく分けて、 ビーム発生部・短パルス化部(入射タイミング決定 部)・超伝導加速部からなる。

ビーム発生部では、²²Na放射性同位元素からβ⁺ 崩壊で生成される高速の陽電子を減速材(タングス テンのメッシュや薄膜等)を通してエネルギーを3eV 程度の幅に揃え、低速陽電子ビームを生成する。減 速材の変換効率は約10³程度であるので、例えば、 10⁹ Bq(約30m Ci)の線源を用いた場合、毎秒10⁶個 (0.1pA)の陽電子ビームを生成することができる。 これを数百eVのエネルギーで引き出し、ビームライ ンに沿った連続磁場(10mT)を用いて輸送する。発生 部直後は、減速材で十分に減速されなかった陽電子 が多く存在しており、これらを除去するためのフィ ルター(湾曲ソレノイド)を設置している。

パルス化部は、チョッパー、プリバンチャー、バ ンチャーからなり、全長60cm程度である。短パルス 化の技術は、既に我がグループにより確立されてお り、20%程度の効率で、200psのパルスを生成するこ とができる^[4]。

ビームをパルス化した後、静電場で20keVにまで 加速し、さらに超伝導加速部で1MeV程度にまで加速 する。大気中で陽電子寿命分光を行うために、1MeV まで加速した陽電子を、真空窓を通して大気中の試 料に入射する。

後で述べるように、超伝導加速部の長さは、冷却 部を含めて40-50cm程度で設計可能である。した がって、装置全体の設計は、個人が運搬することが 可能なサイズ(全長2m)に収めることができる。

2.2 超伝導加速空洞

設計する超伝導加速器は、ビームを20keVから 1MeV付近にまで加速できればよい。1MeV陽電子の物 質中平均飛程は、真空窓の厚に比べ十分に大きくな り、陽電子を高効率で大気に取り出すことができる。

超伝導加速空洞の特性をSUPERFISHを用いて計算 した。空洞は、設計・将来的な製作の簡易性を考慮 し、図2に示すような1セル構造とした。なお、空 洞長Lは、L= $\beta\lambda/2$ という関係式から決定した。ここ で、 β は空洞中での陽電子のローレンツ因子(平均 値)を、 λ はRFの波長を意味する。超伝導材料は、 NbとNb₃Snの2種類とした。それぞれの臨界温度は、 9.3Kと18.2Kである。また、比較のために常伝導加 速空洞(Cu)についても同様の計算を行った。

計算結果を、表1に示す。表中のパラメタfはRF の共鳴周波数を、2Rは加速空洞の直径を、E_aは空洞 内の加速電界を、P_dはRFパワーの空洞内壁損失を、 T_oは運転温度を示す。表から、超伝導空洞内での P_d(100W程度)は、常伝導空洞中のそれ(1MW程度) と比べ10⁻⁴程小さくなるのが分かる。また、計算条 件の範囲では、Nb₃Sn製空洞でのP_dが、Nb製のそれに 比べ数分の1程小さいことがわかる。ビームロー ディングはゼロなので(0.1mW)、加速空洞には P_d(10-100W)のみを供給すれば良く、これは小型固

図2:空洞設計変数

体アンプで可能であり、 小型化に好都合である。

2.3 冷却システム

先に述べたように、 我々は、小型化とメン テナンス簡易化を重要 視し、加速空洞の冷な し、加速空洞の冷な 使用することとした。 なお、この報告書では、 市販のGM冷凍機(住友 重機製SRDK-415D)を空 洞冷却に使用するもの として議論をすすめて いく。冷凍機の冷却能

カP。は温度に依存し、4Kで は1.5W、8Kでは10W、10K では15W程度である。冷凍 機と付属コンプレッサーの 体積は、それぞれ0.02、 0.09m³程度であり、装置全 体の体積(2m³)と比較し十 分に小さい。

耟	1	加速空洞特性	
18			

f	L	2R	E.	P _d (W)					
(GHZ)	(cm)	(cm)	(MV/m)	Νь		Nb ₃ Sn			Cu
				T₀=5K	T _o =8 K.	T _o =5 K	T _o =8 K.	T _o =10 K.	T _o =300K
0.4	12	64	83	20	42	2.4	6.8	11	0.92M
0.6	7.7	44	13	47	95	3.7	15	25	1.2M
0.8	58	33	17	80	170	4.8	23	42	1.4M
1.0	4.6	26	22	130	270	6.1	36	66	1.5M
1.2	38	22	26	180	400	83	52	97	1.8M

図3:超伝導加速部設計図

図3に、加速空洞周辺の設計図を示す。ここでは 空洞の径を40cm(f=0.6GHz強)とした。GM冷凍機の1 次ステージと2次ステージに、サーマルシールド (60K)と加速空洞が、直接ぶら下がる構造とした。 RFの空洞への伝送は、サーマルシールドと熱的に接 触した同軸ケーブルを加速空洞入り口付近まで延ば し、ケーブル先端のアンテナから行うことを考案し ている。これにより、サーマルシールドからの加速 空洞への熱流入は輻射のみとなる。輻射による熱流 入は、冷凍機の冷却能力に比べ無視できるほど小さ いので、加速空洞のduty cycle (D_c)は、大まかに RF電力損失と冷却能力との比(D_c=P_d/P_c)で見積もる ことができる^[5]。

表2に、各加速空洞に対する稼働率Dcの値をまと めた(Cu空洞用のチラー冷却能力は、Pc=100kWとし た)。表から、Nb空洞では10%程度、Nb₃Snでは 100%(CWモード)の稼働率が期待でき(D_c>1)、これは、 常伝導空洞のそれに比べ100倍程も大きいことが分 かる。また、今回行った設計では、Nb空洞の運転は、 5Kで行うよりも8Kで行う方が、稼働率を大きくでき ることが予期される。

3. まとめ

陽電子消滅寿命分光用移動型超伝導加速器の設計 について議論を行った。高エネルギー物理学の分野

表2:各加速空洞の予想されるduty cycle

f	$D_c = P_d P_c$									
(GHz)	Nt)		Cu						
	T₅=5K P₅=1 <i>5</i> W	T, =8K P, =10W	T, =5K P, =1 <i>5</i> W	T, =8K P, =10W	T _e =10K P _e =15W	T _o =300K P _c =100kW				
0.4	0.074	0.24	0.62	1.5	1.4	0.011				
0.6	0.032	0.11	0.40	0.69	0.59	0.0079				
0.8	0.019	0.058	0.32	0.43	0.36	0.0071				
1.0	0.012	0.036	0.24	0.28	0.23	0.0063				
1.2	0.0083	0.025	0.18	0.19	0.15	0.0056				

で開発され、なおも発展途上にある超伝導加速の技術を、初めて陽電子寿命分光という非破壊プローブの実用性向上のために取り入れるアイデアを示した。 超伝導加速部をGM冷凍機で冷却するという独自の 設計思想により、ビーム発生部やコントロール機器 も含めた1MeV 陽電子発生装置を、可搬サイズ

(2m³)に設計することに成功した。また、duty
cycleも10%以上が期待でき、実用レベルの装置となる可能性が示された。

仮にパルス化陽電子ビームの強度を $2x10^5$ /s (0.02A)、加速空洞のduty cycleを10%、陽電子消滅 γ 線の検出効率を5%とすると、陽電子寿命スペクト ル計測率は 10^3 cpsとなり、これは、広く用いられて いるRI (22 Na)から放出する β +線を直接試料に入射 する方法よりも10倍程度大きい。したがって、実用 上優れた装置となる可能性がある。

謝辞

超伝導加速技術の相談に快く応じていただきました E. J. Minehara (JAEA)、 M. Kobayashi、 H. Matsumoto、 T. Saeki、 K. Saito (KEK)、 A. Sakai (Vacuum Products Corporation)、 S. Ichimura (AIST)、 の皆様に心より御礼申し上げます。ありがとうございました。

参考文献

- [1] "陽電子計測の科学"、日本アイソトープ協会、丸 善(1993)
- [2] W. Bauer et al., Nucl. Instr. Metho. B 50 (1990) 300; P. Asoka-kumar et al., Nucl. Instr. Metho. A 337 (1993) 3; M. Maekawa et al., Rad. Phys. Chem. 60, (2001) 525.
- [3] 野口修一、0H0高エネルギー加速器セミナーテキスト (1987);斎藤健治、日本加速器学会誌2巻4号 (2005)
- [4] R. Suzuki et al., Appl. Surf. Sci. 85, 87 (1995).
- [5] 空洞のパルス運転を行う場合、D。を見積もるために、 実際には、RFフィリングタイムまで考慮した時間依 存温度分布を求める必要がある。