Research and Development of Microwave Undulator

Y. Furuta^{1,A)}, H. Matsumoto^{B)}, M. Yoshida^{B)}, T. Imai^{C)}, J. Chiba^{A)}
^{A)} Faculty of Science and Technology, Tokyo University of science 2641 Yamazaki, Noda, Chiba, 278-8510
^{B)} High Energy Accelerator Research Organization 1-1 Oho, Tsukuba, Ibaraki, 305-0801
^{C)}FEL-TUS:IR-FEL Research Center of Tokyo University of Science 2641 Yamazaki, Noda, Chiba, 278-8510

Abstract

We have researched and developed a microwave undulator. An undulator is a device which emit light by passing a charged particle. A permanent magnet undulator is usually used at a free electron laser (FEL) and a storage ring. However a microwave undulator has several advantages those include no radiation degradation. We work toward the first FEL oscillation with a microwave undulator. We present its theory of microwave undulator and microwave simulation and its characteristics measured by a low power test.

マイクロ波アンジュレータの開発研究

1.はじめに

アンジュレータには永久磁石やマイクロ波を用い たものがある。自由電子レーザー(FEL)や放射光リ ングでは、一般的に永久磁石アンジュレータが用い られているが、放射線損傷による性能劣化や製作が 困難であるなどの問題点がある。一方、マイクロ波 を用いたアンジュレータには以下の利点が考えられ る。(1)線形加速器と光共振器を組み合わせたFEL に導入することにより、RF電子銃、加速管を含め た主要構成要素をマイクロ波駆動する統一的なシス テムが実現する。(2)パルス毎にフィードフォワー ドをかけることでFEL光の安定性が向上する。表1 に永久磁石アンジュレータとマイクロ波アンジュ レータの特徴の比較を示す。

学赤外自由電子レーザー研究センター(FEL-TUS)の
FEL ^[3] に導入することを想定し設計した。FEL-TUS
には永久磁石アンジュレータを用いた中赤外FEL
(MIR-FEL)と遠赤外FEL(FIR-FEL)があり、
MIR-FELの発振に成功している。表2に各FELのパ
ラメータを示す ^国 。

表2:FEL-TUSにある各FELのパラメータ

FELパラメータ			
	MIR-FEL	FIR-FEL	[unit]
加速器			
高周波周波数	2856	2856	[MHz]
最大エネルギー	40	10	[MeV]
FEL発振波長	5-16	300-1000	[µm]
アンジュレータ			
全長	1.38	1.75	[m]
磁場周期	32	70	[mm]
周期数	43	25	
Kパラメータ	1.4-2.4	2.0-3.4	
最大磁場強度	0.83	0.52	[T]

2.マイクロ波アンジュレータの設計

と結合窓の形状を決める必要がある。

マイクロ波アンジュレータの設計では、全体構造

全体構造については、FEL-TUSの既存の高周波源 を用いる予定であるため、共振周波数は

2856MHz(S-band)とし、進行波型より構造が単純で

ある定在波型を採用した。共振モードは、電子を蛇

また、強い電磁場を得るよう、上下にリッジと呼ば

行運動させることが出来るTEmmモードを用いる。

表 1	:永久磁石と	マイクロ波を用	いた

シク磁石町 フィクロ池町

个里犬只	シン良口的	マイノロ波室
電磁場制御	磁石間距離	マイクロ波
製作(加工)	複雑	容易
構造体機械強度	大	/]/
放射線劣化	ある	ない
フィードフォワード	難	可能

これまでにマイクロ波アンジュレータによる放射 光の観測をした例はあるが^[1,2]、本研究ではマイクロ 波アンジュレータを用いた初のFEL発振を目指して いる。今回製作するアンジュレータは、東京理科大

¹ E-mail: j6205622@ed.noda.tus.ac.jp

れる突起を取り付けた。図1にマイクロ波アンジュ レータのX-Y断面を示す。

アンジュレータの全長Lは管内波長入。の半整数倍 でなければならない。その為、管内波長入。を求める ためにマイクロ波シミュレーション(FDTD法)を 用いた。全長Lが長いほど磁場の周期数が増える為、 アンジュレータで発生する放射光の強度は大きくな るが、今回は1m以下で設計した。その理由はFEL-TUSの設置スペースおよび加工制限のためである。

図1:マイクロ波アンジュレータの3Dモデル

結合窓の形状については、最適なFilling timeとな る結合度βを実現できるよう決定する。その際、縦 方向の長さは導波管の径と同一とし,横方向の長さ Dを最適化することにした(図1)。

まず、電圧99%Filling timeと結合度の関係をシ ミュレーションによって求めた(図2)。

FEL-TUSのFEL装置の電子銃は定在波型であり、電 子銃とマイクロ波アンジュレータのRF源は同一の ものを使用するためFilling timeも同程度にする必要 がある。電子銃のFilling timeが 1 μ secであることか ら、図 2 より、結合度 β は3.5が適当であると求めた。

次に結合度βと窓の横方向の長さDの関係をシ ミュレーションによって求め(図3)、結合度βが3.5 となる30.5mmをDとした。

以上から決定したマイクロ波アンジュレータのパ ラメータを表3に、またFIR-FELに導入し13MWの マイクロ波を入力した場合のパラメータ表4に示す。

²⁵ ²⁰ ¹⁰ ⁴ ²⁰ ¹⁰ ⁵ ¹⁰ ¹⁰

表3:シミュレーショ	ンによって求めた
マイクロ波アンジョレ	ータのパラメータ

2856	[MHz]	
ダブルリッ	ジ導波管	
$TE_{10,n}$		
117.4	[mm]	
$997.9(=\frac{17}{2}\lambda_g)$	[mm]	
1275.5	[MHz]	
1	[µsec]	
3.5		
9300		
30.5×34	$[mm^2]$	
	2856 ダブルリッ TE _{10,n} 117.4 997.9($=\frac{17}{2}\lambda_g$) 1275.5 1 3.5 9300 30.5×34	

表4:FIR-FELに導入し13MWのマイクロ波を 入力した場合のパラメータ

最大表面電界	100	[MV/m]
Kパラメータ	1.6	
磁場強度	0.63	[T]
発振波長(E _e :10MeV)	164	[µm]

図4:チューナなども含めた組図

2.1 チューナ

シミュレーションなどを用いて全体構造を設計し た。しかし今回製作するマイクロ波アンジュレータ はQ値が大きいため、全長Lは10µmオーダーの工作 精度が要求される。そこでチューナを用いて共振周 波数を調節することが出来るようにした。チューナ を用いてギャップ間距離を0.1mm変化させることに より、共振周波数を12MHz程度変化させることが出 来る。チューナ、冷却パイプなども含めた組図は図 4となる。

3.低電力測定

上記のシミュレーション結果を用いてマイクロ波 アンジュレータを製作した。図5は製作したマイク ロ波アンジュレータ本体、エンドプレート、導波管 を仮組みした写真である。

低電力測定はネットワークアナライザを用いて行 い、マイクロ波アンジュレータの共振周波数と結合 度βを測定する。製作したマイクロ波アンジュレー タの設計値からのずれは,共振周波数については全 長Lで,結合度βについては窓の横方向の長さDで調 整する。その点を考慮し,全長は少し長めに、結合 窓は少し小さめに製作した。測定結果は表5に示す。

図5:製作したマイクロ波アンジュレータ

衣5:低竜ノ測正結果	表 5	:	低電力測定結果	
------------	-----	---	---------	--

共振周波数	2804.2	[MHz]
カットオフ周波数	1166.8	[MHz]
Q _L	5608.4	
Q_0	7010.5	
結合度	0.25	

3.1 共振周波数の測定と調整加工

今回の測定は空気中で行ったため、共振周波数が 真空中にくらべ0.03%低下する。そのため、共振周 波数を2855.1MHzとなるように調節する。表5の測 定結果より、製作後のアンジュレータの共振周波数 は2804.2MHzとなっている。そのため、設計共周波 数2855.1MHzとの50.9MHzのずれを補正するために 削る長さは、カットオフ周波数を用いると、 21.6mmと見積もられる。そのとき全長Lは978.4mm をターゲットに再加工していく。

3.2 結合度βの測定と調整加工

表 5 の測定結果より、結合度βは0.25となっている。そのため、結合度β3.5とのずれを補正する為に 削る長さは、結合度3.5付近でのdD/dβ

$$\frac{d\beta}{dD} = 0.4138[1/mm]$$

を用いて7.9mmと見積もられる。そのとき窓の横方 向の長さDは34.9mmをターゲットに再加工していく。

以上のように、低電力測定の結果を踏まえ、全長 978.4mm、窓34.9mmに再加工、調整を行う。

4.まとめ

FELでの発振を目指し、マイクロ波アンジュレー タの開発研究を行っている。FEL-TUSのIR-FELに導 入することを想定し、S-band定在波型マイクロ波型 アンジュレータの設計を行い製作した。特にアン ジュレータ全長や結合窓の形状については、詳細な マイクロ波シミュレーションを行った。低電力高周 波測定の結果を踏まえ、修正加工し、ろう付けして 本組みする。さらに、高電力によるエージングを行 う予定である。

5.謝辞

本研究は、高エネルギー加速器研究機構による 「加速器科学支援事業における大学等連携支援事 業」の一環として行われている。関係者の皆様に心 より御礼申し上げます。

参考文献

- T. Shintake, et al., "Microwave Undulator", Jpn. J. Appl. Phys., Vol. 22 No. 10 (1982) L601-L603.
- [2] T. Shintake, et al., " Development Microwave Undulator", Jpn. J. Appl. Phys., 22 (1983) 844-851.
- [3] 今井貴之,小城吉寛 日本加速器学会学会誌 Vol.3, No.1, 2006 (51-56)
- [4] 黒田晴雄、"赤外自由電子レーザーの高性能化とそれを 用いた光科学",科学研究費補助金(学術創成研究) 最終報告書、課題番号 11NP0101(2004).