ELEMENTAL MAPPING IN PLANTS USING SUBMILLI-PIXE CAMERA

Hiromichi Yamazaki^{A)}, Keizo Ishii^{B)}, Shigeo Matsuyama^{B)}, Ryouhei Watanabe^{C)}, Kumiko Tashiro^{C)},

Chihiro Inoue^{C)}, Youhei Kikuchi^{B)}, Yu Kawamura^{B)}, Ryouhei Oyama^{B)}

^{A)} Cyclotron and Radioisotope Center,

Tohoku University, Sendai 980-8578, Japan

^{B)} Department of Quantum Science and Energy Engineering,

Tohoku University, Sendai 980-8579, Japan

^{C)} Graduate School of Environmental Studies

Tohoku University, Sendai 980-8579, Japan

Abstract

We have developed an in-air PIXE analysis system which provides elemental distribution images in a region of $3 \times 3 \text{ cm}^2$ with a spatial resolution of ~ 0.5 mm. We call this system an in-air submilli-PIXE camera. This system consists of a submilli-beam line, beam scanners and a data acquisition system for elemental mapping. We applied the in-air submilli-PIXE camera to phytoremediation research. Phytoremediation is a technology for cleaning metal-contaminated soils using plant physiology. *Pteris vittata*, which is known as a hyper-accumulator of As, was analyzed by the in-air submilli-PIXE camera. Elemental images of leaves were obtained *in-vivo* without sample preparation. Elemental map of the leaves showed that arsenic was accumulated in the edges of *Pteris vittata* leaves. From these findings, it is possible to reveal the distribution of heavy metals and their location in the plant using the submilli-PIXE camera. PIXE analysis is an effective tool for undertaking phytoremediation research.

大気サブミリPIXEカメラによる植物内元素マッピング

1.はじめに

PIXE(Particle Induced X-ray Emission)分析法とは、 試料に粒子ビームを照射し放出される特性X線を測 定することにより、試料中に含まれる元素の同定を する分析法である¹⁾。通常のPIXE分析法では、直径 数mmのビームスポットで試料を照射するため、微 量元素が一様に分布しているか、不均一に分布して いるかの情報を得ることはできない。そこで、試料 を破壊することなく、そのままの状態で元素分析す ることをめざして、サブミリメートルの空間分解能 を持ち、数cm²の領域内で、試料を破壊することな く分析できる大気サブミリPIXEカメラの開発を行 い、植物の葉と根のそのままでの分析に応用した。

2.サブミリPIXEカメラ

大気サブミリPIXEカメラは、東北大学工学部の ダイナミトロン実験室に設置した。ダイナミトロン 加速器は最大電圧4.5MVのシングルエンド型で、高 電圧ターミナル内にデュオプラズマトロン型イオン 源が備えており、水素、重水素、ヘリウムイオンの 加速が可能である。ビームブライトネスは3.3 pA・ mrad⁻²mm⁻²MeV⁻¹で、最大電流は3mAである。サブ ミリビームの形成は、四重極レンズを用いることも 考えられるが、ビームのブライトネスが高いことに 着目し、二連のスリットを用いて、発散成分の少な いビームのみを取り出し形成することにした。図 1 にサブミリビーム形成システムの模式図を示す。

図 1 サブミリビーム形成システムの模式図

2連のスリット間距離は1.5mとした。上流側のス リットは2mm厚の銅製で4極型とした。大電流に耐 えるため水冷としている。下流側のスリットは、 ビームの半値幅を決定するため、精度良く設定が可 能なように、0.1mm厚のタンタル製のくさび形ス リットとした。空間分布を測定するためには、ビー ムをスキャンするか試料を動かす必要があるが、試 料のダメージを防ぐためには、ビームを高速にス キャンすることが望ましい。そこで広い範囲を高速 でスキャンするために、垂直方向については空芯電 磁石、水平方向については積層電磁石を用い、最大 3×3cm²の範囲での高速スキャンが可能となった。 これらの電磁石はファンクションジェネレーターに よりコントロールされる。

そのままでの分析のためには、ビームを大気に取 り出し、試料を大気中に置く必要がある。そこで、 12.5µmカプトン膜を通してビームを取り出すことに した。カプトン膜のビームに対する寿命は十分長く、 直径0.7mm、100nAのビームに対しても2000秒以上 であった²⁾。図 2にビーム取り出し部を示す。3× 3cm²のスキャンビームが取り出し可能なように、取 り出し部の膜の直径を50mmとした。一般的な試料 を分析する際、低エネルギーX線は発生量が多く、 またX線のエネルギーの間隔が狭い。そのため低エ ネルギーのX線を測定するためには、薄い入射膜と 分解能が要求される。一方、高エネルギーのX線は 発生量が少ないが、X線のエネルギー間隔が広い。 そのために、分解能はさほど要求されないが、面積 の大きい検出器が要求される。この相反する要求を 満たすために、低エネルギー用と高エネルギー用の 2台のX線検出器を使用するシステムを構築した。 大気中でのエネルギーの損失や広がり、X線の吸収 を最小にするため、試料は膜のすぐ後に取り付ける。

図 2 ビーム取り出し部

試料は元素の空間分布は、先に述べたようにビームを二次元的にスキャンし、X線を検出すると共に、 位置情報をリストデータとして収集する方式とした。 図 3に、開発したデータ収集装置とビームのスキャ ンシステムの概略図を示す。汎用のマルチパラメー タデータ収集装置に位置測定用のADCを加えたもの であり、パルス波高用のADCと位置測定用のADC からなる。2台のX線検出器を用いる事により、低 エネルギーから高エネルギーのX線を、パイルアッ プ等によるスペクトルの歪みを受けることなく検出 可能となった。本システムは、4台までの検出器の 接続が可能で、PIXE分析ばかりでなくRBSやPFS法 等の他のイオンビーム分析法との併用も可能である [3]。

システムの中核は汎用のマルチパラメータデータ

集主装置(Laboratory Equipment、LN-9000)である が、位置測定用のADCは市販品がないので、逐次比 較型ADCを用いて製作した。4台の波高用のADCの 内の1台に信号が入ると位置測定用のADCがビーム のコントロール用の電圧を読み込む。AD変換後に (ADC Noと波高、X座標、Y座標)の形式でリスト データとして1イベント毎にハードディスクに取り 込まれる。2台以上のADCに信号が入った場合は ADC No.と波高が追加されて一イベントとして取り 込まれる。本システムは、測定中においてもデータ のソーティングが可能で、指定した元素の空間分布 や、領域毎のX線のエネルギー分布を表示すること ができる。

3.サブミリPIXEカメラの性能

サブミリPIXEカメラの性能を評価するには、 ビーム径の評価とPIXE分析システムの性能を総合 的に評価する必要がある。試料上をビームでスキャ ンし、試料から発生するX線を用いて分解能を評価 することにした。そこで、サブミリビームで幅 1.5mmのタングステンリボンを走査し、それから発 生する特性X線の収量曲線から分解能を評価するこ とにした。この場合の収量曲線は、ビームプロファ イルと試料の幅とのコンボリューションとなる。 ビームプロファイルが既知の場合には、この積分曲 線を数値的に求め、フィッティングすることにより、 半値幅等を導出することが可能であるが、ビームプ ロファイルが未知であるため不可能である。そこで、 導出した収量曲線を微分することでビームプロファ イルを導出し、ビーム径を求めた。図 4に得られた X線収量曲線を示す。その結果、真空中では、 X:0.48mm, Y:0.25mm、大気中ではX:0.65mm, Y:0.54mmのビームを得ることができた。これらは 同じ条件で求めたものであるが、大気中の場合には、 カプトン膜と大気での散乱によりビーム径が広がっ たものと考えられる。また、真空中での場合には ビームハーロウは本心の1/1000程度であったが大気 中の場合には、1/200程度となり大幅に悪化してい ることが分かった。しかしながら、ビームを大気に 取り出しても0.6mm程度の分解能のビームが得られ、 ハーロウについても、試料取り付け部を工夫すれば

影響を緩和できるので大きな問題にならないと考え られ、大気サブミリPIXE分析が可能になったとい える。

図 4 X線収量曲線

次に実際にプリント基板(ピッチ2.54mm)上を 二次元的に走査し、Cuの元素分布画像を取得した。 に得られたプリント基板のCuの元素分布画像を示す。 直径1mmの穴の部分が明瞭に見えているだけでなく、 0.5mmの基板の間隔についても明瞭に分離できてい ることが分かる。これにより、本システムはビーム だけでなく、データ収集系についても正常に動作し ていることが分かった。

図 5 プリント基板の銅元素の元素分布画像

4. 植物内元素のマッピング

開発した大気サブミリPIXEカメラを植物の重金 属蓄積メカニズムの研究に応用した。これは、近年 問題となっている土壌の重金属汚染を、植物が持つ 生理的作用や、植物と土壌に生息する微生物などと の共生関係を利用して修復するファイトレメディ エーション(Phytoremediation)[4]技術を確立する 上で非常に重要である。これまでの研究では、植物 に吸収された重金属類を分析する際、植物体を灰化 した後分析し全含有量を求める方法が広く採用され ているが、大量の植物体試料を必要とし、時間と手 間がかかる上、平均的な濃度しか求めることができ なかった。大気サブミリPIXEカメラは、多元素を 同時に分析することができるだけでなく、3×3cm² の領域で元素の空間分布を測定することが可能であ るために、たとえば葉全体で多くの元素の空間的な 分布を知ることができるため、これらの研究に非常 に有効である。また、水分を多く含む植物を乾燥さ せることなく生きたままの状態で分析が可能である ので、乾燥の際の元素の移行による元素分布の変化 を考慮する必要もないことからも非常に有効である と考えられる。

ここでは高濃度のAsを体内に集積する植物として 知られているモエジマシダ(Pteris vittata)を用い、 As汚染土壌から移行したAsの植物体における分布 状態を測定した。モエジマシダは農薬製造原料とし て使用していたAsに由来するヒ素汚染土壌を用いて 栽培したものである。図に測定した羽片中での元 素濃度分布の一例として、変色した羽片の元素分布 画像を示す。CaとAsは羽片の周辺部に分布してお り変色した部分と対応している。特にAsの場合は羽 片の周辺部に顕著に集積している。Kは一様に分布 しているが、Asの濃度が高い部分はKの濃度が低く なっている。周辺部が枯死したために、電解質で移 動度の高いKが抜け、Asが取り残されたのではない かと考えられる。

図 6 ヒ素汚染土壌で栽培したモエジマシダの変色 が起きた羽片の元素分布画像

他の成長ステージで見てみると、成長前期の羽片 では、Caは一様に分布しているがAsとKは先端部と 羽片の端に分布しており、成長後期では、K,Ca,As 共に羽片に一様に分布している。この事から、As取 り込み後、個体内でAsばかりでなく他の元素につい ても再配置が行われていると考えられる。変色が生 じた羽片については、CaとAsは羽片の周辺部に分 布しており変色した部分と対応している。また中軸 では全く検出されておらず、土壌から吸収したAsは すべて羽片に移行していることが分かった。

5.まとめ

植物試料をそのままの状態で、元素の空間分布として測定することが可能な大気サプミリPIXEカメ ラを開発し、3×3cm²の範囲を0.5mm程度の分解能 で元素の空間分布を、大気中で測定することが可能 となった。本システムをヒ素のハイパーアキュム レータであるモエジマシダの葉体中での元素分布の 測定に応用した。その結果、葉の成長ステージに よって元素の取り込まれ方が異なっており、Asの取 り込み後に濃縮箇所の再配置が行われ、更にAs濃度 によって異なる集積機構が働いていることが分かっ た。葉全体での元素の空間分布を測定することの出 来る大気サブミリPIXEカメラは、ファイトレメ ディエーション研究を進める上で必要な重金属の移 行メカニズム解明において非常に有効な手段になる と考えられる。

参考文献

^[1] S.A.E.Johansson, J.L.Campbell and K.G.Malmqvist, Particle-Induced X-ray Emission Spectrometry(PIXE) (John Wiley and Sons, 1995)

^[2] S.Matsuyama, J.Inoue, K.Ishii, H.Yamazaki, S.Iwasaki, K.Gotoh, K.Murozono, T.Sato and H.Orihara, AIP conference proceedings 475, Proc. 15th International Conference on the Application of Accelerators in Research and Industry, Denton, TX (1998), pp.480-483

^{[3].}S.Matsuyama, K.Ishii, A.Sugimoto, T.Satoh, K.Gotoh, H.Yamazaki, S.Iwasaki, J.Inoue, T.Hamano, S.Yokota, T.Sakai, T.Kamiya and R.Tanaka, International Journal of PIXE, **8**(2&3), 203(1998)

^[4]角田英男、植生による環境浄化技術(ファイトレメ ディエーション)、資源・素材学会、平成13年学術講演 要旨集、C2-2(2002)