高電流密度電子ビームに対する結晶スクリーンの性能評価

PERFORMANCE TEST OF SCINTILLATING SCREENS FOR HIGH CURRENT DENSITY ELECTRON BEAM

宮原房史#, 佐藤政則, 清宮裕史, 諏訪田剛 Fusashi Miyahara #, Masanori Satoh, Yuji Seimiya, Tsuyoshi Suwada High Energy Accelerator Research Organization (KEK)

Abstract

In the SuperKEKB injector linac, Al₂O₃ ceramic screen has been used for transverse beam profile diagnostics. The image resolution of the screen is not enough for the high-charge, low-emittance electron beams. Thus, a high resolution scintillating screen without degradation of the resolution due to the saturation of the luminescence is required. Performance tests of scintillating screens, YAG:Ce, LYSO:Ce, LSO:Ce, BGO and CsI:Tl, have been performed by using 1 nC, 1.5 GeV electron beams. Beam sizes measured by YAG:Ce and the BGO were 10–25% smaller than those of other crystals. However, the saturation of the luminescence was confirmed for all crystals in the charge density of 0.5–9 nC/mm².

1. はじめに

KEK 電子陽電子入射器(入射器)では SuperKEKB へのアップグレードにともない、電子ビームの電荷量が KEKB 時代 の5倍の5nC、規格化エミッタンスは20 mm mrad 以下となる。これにともない既設のビーム診断系の 性能向上が求められている。現在、入射器ではビームの プロファイル測定にアルミナ蛍光板(Al₂O₃:Cr₂O₃)を用い ている。アルミナ蛍光板は放射線耐性に優れているが、 蛍光板内での光の乱反射やミリ秒オーダーの非常に長 い残光などが原因で分解能が悪化する問題がある。 OTR は高分解能の測定が可能であるが、発光量がシン チレータに比べて 2 桁以上低く、特に電子銃直後の十 数 MeV 程度のエネルギー領域では測定が困難である。 そこで分解能がよく、放射線耐性に優れた結晶スクリー ンへの置き換えを検討している。シンチレータを用いた ビームプロファイル測定は一般的にYAG:Ceが使われて いるが、シンチレータは発光量が飽和する問題があるた め、結晶表面での電流密度が高くなった場合に十分な 性能を発揮できるか不明である。そこで、シンチレータの 特性を考慮し、性能評価のため YAG:Ce の他に LYSO:Ce、LSO:Ce、BGO、針状結晶 CsI:Tl を用いた 性能評価試験を行った。エネルギー1.5 GeV、電荷量 1nC の電子ビームをスクリーン上で収束させ、電流密度 とビームサイズ、光量の変化を調べた。

2. 評価用シンチレータ

評価試験に用いた結晶シンチレータとアルミナ蛍光板の基本的な特性を Table 1 にまとめる(値は文献によって多少異なる)。結晶シンチレータは加工が容易で、可視光領域で発光量が十分大きく、放射線耐性の高いものを候補とした。ビーム電流密度が高いため放射線耐性も重要なパラメータとなる。発光メカニズムの違いが発光量飽和に影響を与える事を考慮し、Ce や TI などの不純物を添加したドープ型と格子欠陥など結晶そのものに発

光中心をもつ内在型の結晶を選定した。

Table 1: Properties of Scintillators

	τ _{decay} [ns]	λ _{max} [nm]	Relative output (NaI:Tl =100)	Radiation hardness [rad]
YAG:Ce	70	550	35	>106
LYSO:Ce	41	420	75	>106
LSO:Ce	35-47	420	75	>106
BGO	300	480	21	>10 ⁵⁻⁶
CsI:Tl (Needle-like struct.)	1300	560	165	>10 ²⁻³
Al ₂ O ₃ :Cr ₂ O ₃	> ms	700	Large	High

Ce をドープした YAG は多くの施設でビーム診断に用 いられており、結晶の厚み、結晶表面での光の屈折、カ メラの被写界深度を考慮した光学系を組むことで OTR と 遜色ない測定が可能なことも分かっている[1]。ただし、 非常に高い電流密度(0.25~0.3 pC/µm²)では発光の飽 和[2,3]が確認されている。しかし、低い電流密度 1.5 nC/mm² でも発光が飽和するという報告[4]があり、具 体的にどの程度の電流密度で飽和が起こるのか不明で ある。LYSO(Lu_{1.8}Y_{0.2}SiO₅:Ce)は高密度(7.1 g/cm³)で発 光量が多くエネルギー分解能に優れ、減衰時間が早い ことから近年、高エネルギー実験や PET で使われはじめ ている。また、放射線耐性にも優れている。Mainz MAMI で 855 MeV の電子ビームを用いたビームプロファイル測 定の評価試験では YAG に比べて高い分解能を持つこ とが報告されている[5]。LSO(Lu₂SiO₅:Ce)は LYSO より もわずかに密度が高いが、物理的な特性はほぼ同じで ある。BGO(Bi₄Ge₃O₁₂)は内在型の結晶として選定した。

[#] fusashi.miyahara@kek.jp

PASJ2016 MOP082

発光の飽和は消光(クエンチング)と呼ばれる現象で起こると考えられる。消光には格子の熱振動の増加にともない光量と減衰定数が減る温度消光と呼ばれる機構や単位長さあたりのエネルギー損失が大きいと単位エネルギー損失あたりの発光が減る電離消光と呼ばれる機構など、いくつかの機構が知られている。電離消光は α/β 比と呼ばれる α 線と β 線に対する光量比 (運動エネルギー~5.5 MeV)が小さいほど起こりやすい。CsI:Tl は放射線耐性が低いが、 α/β 比が他の結晶に比べて $3\sim4$ 倍程度大きいため試験に加えた。

結晶は直径 20 mm で厚さはすべて 100 μm でそろえた。LYSO, LSO は低エネルギー領域で使用した際にチャージアップによるビームへの影響をなくすために、片面にアルミニウムの蒸着を施した。CsI:Tl は結晶が柔らかく、研磨による薄板の加工が困難であるため、ガラス基板上に形成した針状結晶[6]を使用した。

3. プロファイル測定に対する飽和の影響

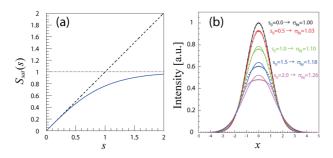


Figure 1: The simple model of the saturation of the luminescence using the equation (1) is shown in the left figure. The right figure shows saturation of the Gaussian distribution. Different levels of the saturation are plotted with different color. The width σ_{fit} obtained from a Gaussian fit (solid line) is represented in the figure.

発光の飽和がビームサイズ測定に及ぼす影響を Logistic Function を用いた単純なモデルで評価した。本来あるべき光量sに対して、飽和した光量 $S_{sar}(s)$ をs $\rightarrow \infty$ で 1 に漸近する関数

$$S_{sat}(s) = \frac{2}{1 + e^{-2s}} - 1 \tag{1}$$

で与える。式(1)を用いて光量が飽和していく様子をFigure 1(a)に示す。飽和が起きた場合で、ビーム中心ほど飽和が強く、分布の外側ほど飽和の影響は少なくなると考えられる。そこでビーム形状をガウス分布として、飽和が起きた際に、測定される分布の幅がどの様に変化するか調べた。ガウス分布 f(x)に、この飽和モデルを適用し、飽和した分布関数をg(x)を

$$g(s) = f(x) \qquad \text{for } s = 0 \qquad (2)$$

$$g(s) = \frac{S_{sat}(s)}{s} f(x) \qquad \text{for } s > 0 \qquad (3)$$

で与える。分布の中心から外側にむけて飽和が弱くなる 様に

$$s = s_0 \frac{f(x)}{f(0)} \tag{4}$$

とした。式(4)の s_0 は飽和の強さを表す量である。異なる s_0 に対する分布を Figure 1(b) に示す。飽和した分布をガウス分布とみなし、フィッティングを行った結果を実線で示している。 s_0 =1.5 の場合、中心の強度が 40%減少しているが、一見するとガウス分布とさほど大差はなく、実際の測定では、ビームの中心部分がつぶれているのか、飽和により中心付近の光量が減少しているか判断することは困難である。分布中心での発光量の減少量に対するビームサイズの過大評価の割合を Figure 2 に示す。飽和の判断が難しい範囲(中心で4割以下)でも1~2割程度ビームサイズを過大評価してしまう可能性があり、ビームサイズの精密測定を行う際は飽和の影響を無視出来ないことが分かる。

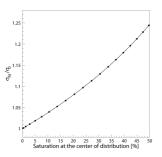


Figure 2: Over estimation of the beam size due to the saturation of the luminescence.

4. ビームプロファイル測定実験

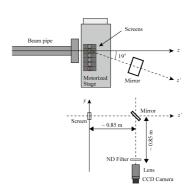


Figure 3: Experimental setup.

ビームプロファイル測定は入射器アーク部手前の直線 ダンプラインで行った。ダンプライン直前にはトリプレットが設置してあり、最下流の四極電磁石からスクリーンまで距離は約 9.7 m である。入射器では電子源に熱電子銃とフォトカソード RF 電子銃を利用している。本実験では熱電子銃から放出した 1 nC の電子ビームを使用した。ビームダンプ直前のエネルギーは 1.5 GeV、規格化エミッタンスは水平、垂直方向でそれぞれ~50、~100 mm rad である。スクリーンは可動ステージ上に平行に配置し、任意のスクリーンにビーム照射が出来る様に

した。ビームは厚さ30 μm、直径10 mm の SUS の窓から 取り出される。取り出し窓からスクリーンまでの距離は 11 mm である。 取り出し窓中での多重散乱によるスクリー ン位置でのビーム広がりを EGS5[7]を用いて評価したと ころ、約3μm であった。多重散乱の影響はビームサイズ (>100 μm) に比べて十分小さく、無視できる。 実験セット アップの概略を Figure 3 に示す。結晶の厚みによるビー ムサイズの増大の影響を少なくするため、ビームラインに 対して19°の位置にミラーを設置し、85 cm 下方に設置 した CCD カメラ(12bit)でビームプロファイルを取得した。 結晶ごとに発光量が異なることと、CCD の量子効率とシ ンチレータのピーク波長の関係で、同じビーム条件でも スクリーンごとに得られる ADC 値が異なる。そこで、ADC が飽和せず、十分な光量が得られる様に可変式の ND フィルターで光量の調整を行った。光学系は焦点距離 f=12.5~75mm/F1.8 のレンズと 2 倍のエクステンダーを 用いた。回折限界は数ミクロン程度で、ビームサイズに 対して十分小さい。

はじめにスクリーン上でビームサイズが最小となる様にオプティックスを調整した。その後、各結晶ごとに最下流の四極磁石を用いた Q スキャンを行い、各結晶ごとのビームサイズとビームサイズに対する発光強度の変化を測定した。測定中はビーム電流の変動は σ <0.3%で安定であった。入射器上流部でのビーム位置変動によるスクリーン上での位置変動は水平、鉛直方向でそれぞれ 0.1, 0.05 mm 程度 (RMS)であった。

5. ビームサイズ、発光強度の比較

6 種類のスクリーンで測定したビームプロファイルの例を、Figure 4 に示す。YAG、LYSO、BGO に比べ LSO、CsI はビームサイズが有意に大きく測定されていることが分かる。アルミナ蛍光板は粉末状の結晶の焼結体で、半透明であるため、スクリーン内部で光が乱反射され像が大きくなってしまうと考えられる。また、アルミナ蛍光板は減衰時間が長いため、十分なADC値を得るためにCCDカメラの露光時間を長くする必要がある。他の結晶の測定では露光時間を 20 μs としたのに対し、アルミナ蛍光板では 1ms に設定した。このため、画像に所々放射線損傷をうけた CCD ピクセルのノイズが現れている。

スクリーン上流の四極電磁石(QD R0 03)の電流値 ごとに測定したビームサイズを Figure 5 に示す。YAG, BGO はほぼ同等のサイズが得られた。LYSO に関しては 参考文献[4]で YAG, BGO に比べて OTR に近い小さな ビームサイズを得ているが、本実験ではビームを収束し た領域で YAG, BGO に比べて 20%ほど大きくなってい る。結晶ごとにピーク波長が異なるため、各結晶の測定 ごとにピント調整を行う必要があるが、本実験ではリモー ト操作によるピント調整が出来ず光学系を固定したため、 色収差が生じてサイズが増大した可能性がある。色収差 の補正など光学系の検討、改良は今後の課題である。ま た、アルミニウム蒸着の影響も考慮する必要がある。LSO は BGO に比べ 1~4 割程度サイズが大きく、ビームを収 束させた領域では LYSO に比べても 2~3 割大きい。 LYSOとLSO はピーク波長、屈折率に違いはないため、 結晶固有の特性により分解能が悪化していると思われる。 CsIもYAG, BGO に比べ分解能が良くない。CsI は針状

結晶を用いたため、等方的に発生したシンチレーション 光が針状結晶間で乱反射し、一部が針状構造内部を伝 搬することで、スクリーン表面に現れて分解能を悪化させ た可能性がある。また、CsI はビーム照射実験終了後に 黄色く変色していた。放射線耐性が低いことから放射線 による損傷を受けたと思われる。アルミナ蛍光板は他の スクリーンに比べてビームサイズが倍以上膨らんでおり、 精密な測定には向かないことが分かる。



Figure 4: Background corrected beam images and profiles measured with different scintillating screens.

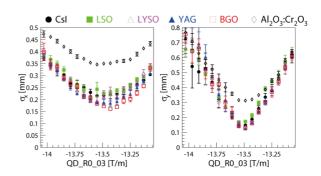


Figure 5: Comparison of electron beam sizes measured with different scintillating screes. The left and right figure show the horizontal and the vertical beam size as a function of the quadrupole strength, respectively. Error bars represent RMS for 10 times measurement of the beam size.

PASJ2016 MOP082

ビーム電流密度と発光量の変化を Figure 6 に示す。 同じビーム条件でも結晶ごとに得られるビームサイズが 異なるため、ビームの電流密度は四極電磁石の電流値 ごとに BGO で測定した値を用いた。今回の測定では OTR スクリーン用いたビームサイズ測定を行わなかった ため比較となる測定が無く、実際のサイズよりわずかに大 きくなっている可能性がある。本実験の電流密度は 0.5 ~9 nC/mm² であった。アルミナ蛍光板を除くと、いずれ の結晶スクリーンも電流密度の増加にともない発光量が 減少していることがわかる。今回、試験した結晶では YAG と BGO が光量の減少率が少なく、電流密度が 1 nC/mm² 増えるごとに約 7%光量が減少することが分 かる。LSO は LYSO に比べ発光量の減少率が大きく、こ れがビームプロファイルの分解能悪化(Figure 5)に影響 していると思われる。CsI:Tl はα/β比が大きいことから発 光量の飽和に対する耐性が高いと期待されたが、光量 の減少率は YAG や BGO の倍程度となっている。アルミ ナ蛍光板は電流密度の増加とともに発光量も増加して いるが、この理由は不明である。また、同程度の電流密 度に対して発光量の値がずれており、発光量の高い側 はQ-scan 測定でビームを絞っていく過程、低い側はビー ムを広げていく過程に対応している。ビームサイズを広 げていく過程のデータで光量が下がっていることから残 光による発光量の抑制も起きている可能性がある。

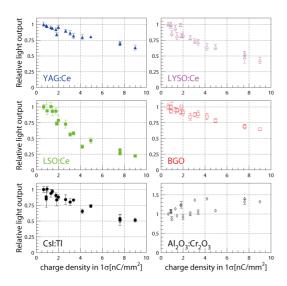


Figure 6: Charge density and relative output of the luminescence. The light output is normalized by the light output of the maximum beamsize point.

6. まとめ

KEK 電子陽電子入射器では、電子ビームの大電流・低エミッタンス化にともない、これまで使用してきたアルミナ蛍光板に代わる高性能のスクリーンモニターが要求される。そこで 1 nC、1.5 GeV の電子ビームを用いて候補となるシンチレータ YAG:Ce、LYSO:Ce、LSO:Ce、BGO、CsI:TIのビームサイズの分解能、発光量の飽和に関する評価試験を行った。ビームサイズの分解能、飽和対する耐性はYAG、BGOが同程度に良かったが、発光量の飽

和は $0.5\sim9$ nC/mm² の範囲でいずれの結晶でも観測された。

本実験はシンチレータによる測定の比較となるOTRスクリーンによる測定が行われなかったため、ビームサイズの評価については十分とは言えず、OTRも同時に測定する試験が必要である。また、ビームサイズ測定に関しては色収差の影響を排除できず、光学系を改良した測定が求められる。アルミナ蛍光板からの置き換え候補はこれらの問題を改良した実験の後に決定する。

謝辞

本研究を始めるにあたり、物質構造科学研究所の岸本俊二教授と東北大学の越水正典准教授に議論していただいた。特に、越水氏には結晶シンチレータの特性に基づいたシンチレータの選定のために重要な助言をいただいた。深く感謝します。

参考文献

- [1] R. Ischebeck *et al.*, "Transverse Profile Imager for Ultrabright Electron Beams", Phys. Rev. Accel. Beams. **18**(2015), 082802.
- [2] T. Naito et al., "High Resolution Screen Monitor Using YAG:Ce Screen", Proceedings of the 11th Annual Meeting of Particle Accelerator Society of Japan, Aomori, Aug. 9-10, 2014, SAOM07.
- [3] A.H. Lumpkin et al., "Optical Techniques for Electron-Beam Characterizations on the APS SASE FEL Project", Nucl. Instr. Meth. A 429(1999), 336.
- [4] U. Iriso, G. Benedetti, and F. Perez, "Experience with YAG and OTR Screens at ALBA", Proceedings of DIPAC09, Basel, Switzerland, May. 25-27, 2009, TUPB15.
- [5] G. Kube et al., "Inorganic Scintillators for Particle Beam Profile Diagnostics of Highly Brilliant and Highly Energetic Electron Beam", Proceedings of IPAC2012, New Orleans, Louisiana, USA, May, 20-25, 2012, WEOAA02.
- [6] http://www.hamamatsu.com/resources/pdf/ssd/09 handbook.pdf
- [7] http://rcwww.kek.jp/research/egs/egs5.html