PASJ2015 WEOM04

異なる材質と工法で製造された超伝導加速空洞の性能評価

EVALUATION OF SRF CAVITIES MANUFACTURED BY DIFFERENT MATERIALS AND FABRICATION METHODS

清水 洋孝#, 井上 均, 梅森 健成, 加古 永治, 佐伯 学行, 山口 誠哉, , 山中 将, 渡辺 勇一

Hirotaka Shimizu[#], Hitoshi Inoue, Kensei Umemori, Eiji Kako, Takayuki Saeki, Seiya Yamaguchi, Masashi Yamanaka, Yuichi Watanabe

KEK High Energy Accelerator Research Organization

Abstract

In KEK, several kinds of R&D superconducting RF cavity are fabricated. All those cavities were manufactured by different materials and fabrication methods. Especially, in this report, a hydroforming cavity, a large grain (\sim 10cm) Nb cavity of high RRR (\geq 250), two fine grain (50 \sim 150um) cavities, for which Nb delivered from different suppliers, and a large grain cavity that composed of low RRR (\sim 100) Nb material are discussed. To evaluate those single cell cavities, vertical tests were conducted in KEK-STF. Technical details of each fabrication method and obtained high power test results are described. Through this sequential work, obtained knowledge and skills are fed back to prospective cavity fabrications.

1. はじめに

超伝導加速方式は、空洞表面での電気抵抗が著し く小さい利点を活かした、優れた粒子加速の手段と 考えられており、SuperKEKB加速器をはじめとし、 cERL加速器の injector 及び main linac において、超 伝導加速空洞が実際に使われている。将来計画とし て現在推進されている ILC 加速器においても、超伝 導加速方式が採用されており、これに向けた活動の 一つとして、KEKでは、空洞作製様に導入された電 子ビーム溶接機と、機械工学センターが所有する他 の工作機器を用いる事により、TESLA-like 9-cell 空 洞の内製化に取り組み、更に作製した空洞の縦測定 を行う事で、TDR で定められた仕様に近い性能を発 揮出来る空洞に仕上がっている事を確認した^[1]。

この TDR によると、ILC 計画では 17,000 本を越 える超伝導加速空洞が必要とされ、それらの空洞は 高い RRR(>300)を示す Nb 材を用いて、プレス加工 による成形と電子ビーム溶接での接合によって製造 する方法が baseline design として示されている^[2]。 上で記した 9-cell 空洞の内製はこの仕様が技術的に KEK において達成出来る事を示す目的で行われたが、 より空洞性能を向上させる工夫やコストダウンに有 効な材料・工法を見付け出し、実際に新しい材料や 従来と異なる工法で作製した空洞の性能評価を行う 事を目的として、Table 1 に挙げた5本の試験空洞の 製造・評価を行った。比較する項目の差を解り易く する為に、今回作製した5本の空洞は全て単セル形 状とした。次章以下でそれぞれの空洞作製の目的と 縦測定の結果を詳しく紹介していく。

2. 異なる Nb 材を用いた空洞の性能比較

この章では電子ビーム溶接による作製を行った、 R-1 から R-5 までの4本の各空洞について報告する。 それぞれの空洞形状は、R-4 空洞が TESLA-like center cell 形状、他の3本の空洞が TESLA-like end cell 形状となっている。

2.1 Baseline 空洞 (R-2)

高い RRR を持つ細粒 Nb 材を用い、電子ビーム溶 接の手法で組み上げる、世界的に見て最も標準的な

Cavity Name	Grain Size	RRR	Fabrication Method	View Point, Object
R-1	Large	High	Press Forming & EBW	Large Grain Nb
R-2	Fine	High	Press Forming & EBW	Baseline (Reference Cavity)
W-1	Fine	High	Hydroforming	Hydroforming
R-4	Fine	High	Press Forming & EBW	Different Nb supplier
R-5	Large	Low	Press Forming & EBW	Low RRR and Large Grain Nb, Different Nb supplier

Table 1: List of R&D Cavities

hirotaka@post.kek.jp

PASJ2015 WEOM04

空洞が R-2 空洞である。今回の比較検討実験におい ても、指標の役割を担う空洞である。しかし一回目 の縦測定では、2.0K での到達加速勾配が 10MV/m 程度しか得られず、測定の早い段階から大量の放射 線が観測された。Figure 1 の左側の plot から、X 線 の量が増えるに従って Qo の値が急速に落ちて行く 様子が見られる。この様な低い加速勾配の段階で field emission が観測される場合、非常にはっきりと した emitter が空洞内部に存在する事が予想される。 しかし縦測定終了後に内面検査装置を使った観察を 行っても、激しい field emission の種に成り得る構造 が見付けられなかった。CCD を使った目視確認では とうとう原因が見付けられなかったが、実際に手を 空洞内に入れて溶接ビードやアイリスの接合部を 触って調べる事によって、ビームパイプとセルの繋 ぎ目に、小さいながら、非常に鋭い段差が残ってい る事が確認出来た。ほぼ全周に渉って段差が残って おり、この尖った部分が emitter となっていたと考え られる。真上から見下ろす構造の内面検査装置では、 視線の方向に垂直に落ち込む段差が見付けられな かった。

Figure 1 : Q-E plot of VT-1 and found gap around iris.

電場が集中するアイリス部分を研磨し直し、2回 目の縦測定を行った。Figure 2 に再測定時の Q-E curve を載せる。Emission が治まり、到達加速勾配 が大きく伸びた事が解る。アイリス部分の事前の処 理が、空洞性能に大きく影響を与える事を学び、こ の経験が以降測定した空洞の準備に活かされた。

Figure 2 : Vertical test results of R-2 cavity.

2.2 大粒 Nb 材を使った空洞 (R-1)

大粒の Nb 材を使った空洞作製を行った。Figure 3 に大粒の Nb 材の写真を載せる。中央部を占める結 晶は~10cm 程度の大きさであるが、周辺部分には、 数 cm 程度の大きさの細かな粒界が集まっている。 電子ビームを使った母材からの精錬処理時に、溶解 した Nb を受ける坩堝の周辺部が、より急速な冷却 の影響を受ける為、不安定な結晶の成長が細かな粒 界となって現れている事がわかる^[3]。

Figure 3 : Large grain Nb plate.

この様な素材を用いてプレス加工による成形を行 うと、空洞の赤道部分に相当する場所に、比較的細 かな結晶粒が集中する事になる。結晶内部と粒界面 では、加工時の振る舞いが違っており、赤道の円周 方向での形状の不均一性や、厚みの違いを生む事に なる。この結果、細粒 Nb 材と同様の標準的な印籠 構造での嵌め合わせを行い、電子ビームでの溶接を 行うと、赤道部の肉厚の違いが熱容量の変化となっ て現れ、溶接ビードの幅に著しく差が生じる事が観 測された^[4]。この時得られた大粒 Nb 材の赤道部に 関する難加工性の知見は、同じく large grain 材を使 う R-5 空洞の作製時の工夫へと feedforward された。

Figure 4 に R-1 空洞の縦測定の結果を載せる。

PASJ2015 WEOM04

40MV/m を越える加速勾配が安定して得られており、 Qo の値としては、シリコン温度計の測定限界(1.5K) を下回った状態での測定において、 5.09×10^{10} と言 う値が得られた。この値が全5本の R&D 空洞を通 じて得られた値の中で、最も高いQ値であった。

2.3 異なる供給元からの Nb 材を使った空洞 (R-4)

やはり高い RRR を持つ、細粒 Nb 材を用いた空洞 の作製であるが、指標となる R-2 空洞との違いは、 Nb 材の供給元が異なっている点である。もう一点 これまでの空洞と異なっている点が、ビームパイプ の製造方法にある。他の全ての R&D 空洞のビーム パイプが、細粒の板材をロール加工して作られた物 であるのに対して、R-4 空洞のパイプは、大粒 Nb 材の鋳塊から、削り出しで刳り貫かれた物となって いる。このパイプも、R-4 空洞の Nb 材の供給元で 作成された物である。

Figure 5 : Vertical test results of R-4 cavity.

Figure 5 に R-4 空洞の Q-E curve を示す。R-2 空 洞の前処理に倣って、事前にアイリス部分が滑らか になる様に、やや大きいと感じられた溶接ビードの 盛り上がりを局所研磨で均した。2.0K での測定で 40MV/m を越える加速勾配が得られ、放射線の放出 も観測されなかった。KEK では空洞用として使った 経験の無い Nb 材を用いた作製であったが、空洞の 性能評価の結果からは、使用に対して全く問題が無 いと結論出来る。尚、2.0K での測定終了後に、空洞 内部の真空度の悪化が見られた為に、この空洞に関 しては、2.0K での測定だけで冷却を中止している。

2.4 低い RRR の Nb 材を用いた空洞 (R-5)

これまで報告してきた3本の空洞と次章で紹介す る液圧成形空洞には、一つの共通点があり、table 1 を見ると、これら4本の空洞は、何れも高い RRR の Nb 材によって作られた物である事が解る。ここ で報告する R-5 空洞に関する説明に入る前に、一度 Nb 材の RRR の持つ意味を考えて見る。

常温での Nb の電気抵抗を R(300K)、転移温度直 前まで冷却した、転移前の電気抵抗を R(9.2K)とす ると、Nb 材の RRR はそれらの値の比として R(300K)/R(9.2K)と表される^[5]。この値が高い方が超 伝導空洞材料として望ましいと考えられる理由の一 つに、4.2K における、簡略化された熱伝導率との関 係を挙げる事が出来る^[6]。即ちκを熱伝導率として、

$\kappa = 0.25 \times \text{RRR}|_{4.2\text{K}}$

この例を基に考えると、空洞を形成する Nb の熱伝 導率は、RRR に比例して上昇する為、空洞の周りを 覆う液体ヘリウムへの排熱の効率を考えると、残留 抵抗比が高い方が好ましい事が確かに理解出来る。

上の様な従来の考え方に対して、合理的な RRR の許容下限を調べる取り組みが、R-5 空洞による R&D の目的である。"合理的"の意味は以下の説明に よる。代表的なレアメタルであるタンタルとニオブ は、同じ鉱脈から採取されるが、最外殻電子の配置 が等しく、周期律表の同じ族に属しているこれらの 金属は、互いに分離・精製する事が非常に難しい。 これまでは精錬度を上げる為に、何度も電子ビーム 溶解を繰り返して高い RRR を担保してきたが、例 えばタンタルの副産物として得られる商業ベースの ニオブ材であれば、比較的安価に手に入れる事が出 来る。特徴としてはタンタルの含有量が多く(例とし て R-1 空洞の Nb 材と比べると 10 倍以上)、RRR も 低い(やはり R-1 空洞の材料と比べて 1/4 程度)値を 示している。この様なニオブ材が空洞利用にも耐え 得るのであれば、今後の空洞材料の選定に対して、 大きな影響をもたらす。低 RRR ニオブインゴット の空洞利用への可能性を研究してきた G.R.Myneni 氏^[7]とブラジルの CBMM 社^[8]の協力により、上記課 題を検証すべく、インゴットから板材を切り出す段 階から空洞作製を始める機会が得られた。作製と評 価を行った結果を次に述べる。

Figure 6 : Half cells for R-5 cavity (after stamping).

R-5 空洞の作製時に見られた著しい特徴として、 粒界での Nb 材の振る舞いが挙げられる。これまで と同じ成型用金型を用いたプレス加工後に、特定の 粒界部分が同じように割れている事が確認された。 Figre 6 に作製した R-5 空洞 half cell の写真を載せる。 これは R-1 空洞の Nb 材では無かった現象である。 大粒 Nb 材を使用する上での注意点の一つに、grain boundary が leak tight か否かが挙げられるが^[3]、その 後の試験で、割れによる leak は無い事を確認し、空 洞作製を進めた。R-1 作製時の経験を活かし、half cell の赤道部内側を幅約 10mm 程度縦型旋盤によっ て削る事で、肉厚の均一化を図る工夫を行った。

Figure 7 に縦測定で得られた、R-5 空洞の Q-E plot を示す。低 RRR の Nb 材を用いた場合であっても、 到達加速勾配としては 28MV/m が得られ、Qo 値に 関してもこれまでの縦測定で得られた他の空洞の値 と、大きな差は無い結果が得られた。一回目の縦測 定では、空洞のセル部分全体を覆う様に取り付けた 炭素抵抗温度計によって、発熱箇所の特定を行い、 超伝導状態の破れの原因となった傷や不純物の有っ たと思われる場所を、空洞引き上げ後に内面検査装 置で目視確認する作業を行う。今回の R-5 空洞にお いても、quench が起こる直前には、赤道のある特定 の領域が常に発熱を起こしていた。

Figure 8 : Found defect around heated area (1).

Figure 8 と 9 に、縦測定終了後に行った、内面の 再検査の様子を載せる。炭素抵抗温度計が発熱を示 した赤道付近の特定の角度領域を、検査器で見た結 果を基に、high power test 時の発熱に寄与してい

Figure 9 : Found defect around heated area (2).

たと思われる構造のレプリカを採取してその大きさ を測定した。一つは肉厚の均一化を図った赤道部の 加工時に、構成刃先の影響を受けて出来たと思われ る毟れの痕で、大きさが~300um 程度、深さ方向が ~20um 程度の窪みであった。もう一つが、赤道溶接 時に出来たと思われる bead 痕の一部で、form tracer を使った計測により、やはり 30~40um 程度の段差が 生じている事が解った。これらの構造を局所研磨で 落し、2回目の縦測定で再度空洞性能の評価を行う。

3. 異なる工法で製造された空洞 (W-1)

先に述べた様に、超伝導加速空洞の組み立てには、 プレス成型した各セルを、電子ビーム溶接を用いて 繋ぎ合わせる方法が一般的である。この方法では、 電場の集中するアイリス部分と強い磁場の影響を受 ける赤道部分が、それぞれ溶接個所と重なっており、 溶接時に生じるスパッタやビードの出来具合が、空 洞の性能に大きな影響を及ぼす。また電子ビーム溶 接機自身が非常に高価である点が、超伝導空洞の安 価な大量生産化に歯止めをかけている状況である。

これに取って代わる手段として、液圧成形法を用 いた空洞作製技術を挙げる事が出来る。機械工学セ ンターでは、電子ビーム溶接機と併せて液圧成形機 も所有しており、これまでに多くの銅製空洞を試作 してきた。ニオブ材を用いた液圧成形空洞の作製を 大きく進歩させたのが、FNAL との共同研究を開始 する事で得られた、ATI Wah Chang の非常に優れた ニオブ材の存在である^[9]。この材料を用る事で、 TESLA-like 空洞の center cell 形状の単セル空洞の成 形に成功した^[10]。ネッキング処理の後に、油圧によ る金型への押し当て(液圧成形工程)と熱処理の組を 数回繰り返す事で、支給されたニオブのパイプ材を 空洞の形状に変形させていき、成型終了後に、 FNAL に送り返す事によって、遠心バレル研磨処理 を受けた[11]。内面研磨処理の後、再び送り返されて きた液圧成形空洞は、KEK において以下の標準的な プロセスである①Pre-EP and EP-1 ②Annealing (750 $^{\circ}$ C \times 3-hour) ③ EP-2 and HPR ④ Clean Room Assembly ⑤Baking (140℃×48-hour) を経て、縦測 定へと移行する。縦測定へと繋がるこれらの工程は、 W-1 空洞にだけ適用された物では無く、先に紹介し た他の空洞に対しても全て同じ処理を施している。

4.

PASJ2015 WEOM04

Figure 10 : Typical pits on the equator line.

W-1 空洞の最も特徴的な点は、赤道部に見つかっ た、連続的な窪みの存在である。レプリカによる型 取りを行い、レーザー顕微鏡で深さを測った結果、 40~50um 程度の窪みが多数存在している事が解った。 これらの窪みは、液圧成形時に生じていたと考えら れるが、形状を保持しながら研磨を進める電解研磨 処理では、この様な窪みが均される事は期待出来な い為、局所研磨機を用いて除去を行った。Figure10 に内面検査器によって撮影した窪みの除去時の写真 を載せる。研磨が進むに連れ、窪みが消えて行く様 子が見て取れる。

Figure 11 : Vertical test results of W-1 cavity.

Figure 11 に W-1 空洞の縦測定の結果(Q-E curve)を 載せる。最大到達加速勾配は 36MV/m で、得られた Qo の値としては 2.4×10¹⁰ (2.0K)であった。横軸が 24MV/m を越えた辺りから、Qo の値の減少が早く なっているが、同時に放射線モニタで検出された X 線量が増加している事が解る。この放射線の原因と して考えられる defect について説明を行う。一本の 均一なパイプを徐々に変形させて空洞を作製し、電 子ビーム溶接による継ぎ目(seam)を無くす事が seamless cavityの最大の目的であるが、単セルのW-1 空洞の場合、省いた溶接個所は赤道部一周分であ り、両側のアイリス部分に関しては、ネッキング終 了後に残ったパイプ部分を切り落とし、別途用意し ておいたビームパイプを溶接している。この接合部 分の溶接時に出来た傷が、局所研磨では落とし切れ ておらず、emitter となって放射線を放出していると 考えられる。

Figure 12 : Achieved gradient of each cavity.

これまでに作製と評価を行って来た5本の単セル 空洞については、液圧成形法と電子ビーム溶接法の どちらの方法を用いた場合であっても、高い RRR を示す Nb 材から作られた空洞は、最終的には全て 35MV/m 以上の加速勾配を得た。対して低い RRR を示す Nb 材で作られた R-5 空洞は、一回目の縦測 定において、28MV/m(2.0K)の加速勾配であった。 Cell 周辺の温度計の示す発熱箇所を調べると、これ までの発熱時と同じ様な 30~40um 程度の凹みが見付 かった。経験的には、これら窪みの構造を局所研磨 する事で、更に到達最大加速勾配は伸びる事が期待 出来ると思われる。また、現在も引き続き新しい加 工技術やこれまでと違った Nb 材を使った空洞作製 の技術開発を進めている。

参考文献

- T.Saeki, et al., "Studies of fabrication procedure of 9-cell SRF cavity for ILC mass-production at KEK", Proceedings of IPAC2014, Dresden, Germany.
- [2] "ILC Technical Design Report" https://www.linearcollider.org/ILC/Publications/Technical-DesignReport
- [3] P.Kneisel, et al., "Review of ingot niobium as a material for superconducting radiofrequency accelerating cavities", Nuclear Instruments and Methods in Physics Research Section A, Volume 774, 21 February 2015, Pages 133-150.
- [4] T.Kubo, et al., "In-house production of a large-grain singlecell cavity at cavity fabrication facility and result of performance tests", Proceedings of IPAC2014, Dresden, Germany.
- [5] W.Singer, et al., "RRR-measurement techniques on high purity niobium", TTC-Report 2010.
- [6] H.Padamsee, et al., "RF superconductivity for accelerators", WILEY-VCH Verlag GmbH & Co. KGaA.
- [7] G.Myneni, et al., "Nobium RRR and Ta specifications for SRF cavities", presentation file for 7th SRF Materials Workshop, July 16th 2012.
- [8] http://www.cbmm.com/us/p/108/home.aspx
- [9] https://www.atimetals.com/Pages/default.aspx
- [10] M.Yamanaka, et al., "シームレスニオブパイプを用いた 液圧成形による超伝導加速空洞の製造", Proceedings of the 12th Annual Meeting of Particle Accelerator Society of Japan, August 5-7, 2015, Fukui, Japan.
- [11] C.Cooper, et al., "Centrifugal barrel polishing of cavities worldwide", Proceedings of SRF2011, Chicago, IL USA.