平成26年8月11日

日本加速器学会第11回年会加速器応用・産業利用セッション

950keV/3.95MeVXバンドライナックX線源の 社会・産業インフラ特定検査への展開

上坂 充^{#, A)}, 藤原 健^{A)}, 土橋 克弘^{A)}, 裴 翠祥^{B)}, 武 文晶^{B)}, 草野 譲 一^{C)}, 中村直樹^{C)}、田辺 英二^{C)}, 菅野 浩一^{D)}, 大矢 清司^{E)}, 服部 行 也^{E)}, 三浦 到^{F)}, 本間 英貴^{F)}, 木村 嘉富^{G)}

^{A)}東京大学大学院工学系研究科原子力専攻,^{B)}原子力国際専攻, ^{C)}アキュセラ(株).,^{D)}エーイーティージャパン(株),

^{E)}日立パワーソリューション,^{F)}三菱化学(株),

^{G)} 土木研究所,^{H)} 国土総合政策技術研究所

- ・ 950keVシステムの構成改良とその場検査推進
- 950keV/3.95MeVシステムでの内部鉄筋構造形 状評価
- 高エネルギーX線用X線カメラ開発状況
- ・橋梁特定検査応用への道

現状の課題

コンクリート橋の損傷

▶ 損傷を受けた橋梁の健全性の評価が必要

ハードとソフトの手法の有機的融合

ハード

- 950keVXバンド(9.3GHz)電子ライナックX線源
 現場対応・高操作性型完成
 40cmPC橋も数十分で内部鉄筋構造のサイズ評価可能
 すでにその場実用検査実績2件、予定多数
- 3.95MeVXバンド(9.3GHz)電子ライナックX線源 実験室での性能確認・実績有り
 40cmPC橋材の透視は数秒で取得可能 CTにより7mm鉄ワイアの形状評価可能
- 3. 非破壊検査高エネルギーX線専用X線カメラ ソフト
- 4. マルチ投影法による鉄筋直径評価
- 5. 部分角度CT
- 6. Tomosynthesis
- 7. Wavelet法による散乱X線ノイズ除去

可搬型950keV・3.95MeVXバンドライナックX線源

装置仕様					
RF加速空洞共振周波数	9.3 [GHz] ±25 [MHz]				
電子ビーム収束方式	RF集束方式				
X線発生強度	2,000 [mGy/min]以上 at 1 [m]				
RF発生源	9.3[GHz]マグネトロン パルス幅4[µs] 繰返数200[PPS]				
電子銃出力電流	パルスピーク電流 300 [mA]以上				
出力方式	コンデンサ充電スイッチング方式				
X線ヘッドユニット重量	62kg				
コリメータ重量	80kg				
高周波源ユニット重量	62kg				
HVPS,制御ユニット重量	116kg				

主要仕様				
運転周波数	9.3 [GHz]			
RF源	マグネトロン			
入力RF電力	250KW			
パルス幅・繰返数	3 [μs] 、330 [PPS]			
加速管全長	25 [cm] 以下			
ビーム電流	64mA以上			
電子ビーム集束方式	RF集束方式			
X線発生強度	50 [mGy/min]以上 at 1 [m]			
電子銃電圧	20KV			
電子銃	三極管			

On-site Inspection of Reinforced Concrete Pier of Chemical Plants on Jan.8,9,10, 2014

撮像部位

In Situ NDE Experiment of RC Structure

Position	А	В	С	Result analysis	
Maximum thinning rate	8.7%	14.5%	7.0%	 In several position, steel rods thinning happened. Thinning rate is 7%~14.5%, still within robust level accord 	
Maximum reduction(mm)	3.1	6.3	3.9	mechanical analysis.Maintenance by water proof glue in fixed position is decided	
2014/8/25				 instead of overall repair. Cost is substantially reduced. 	

国土総合政策技術研究所における実機劣化橋梁試料ベンチマーク試験(平成25年2月)

Tent

Linac on the frame

FPD on the frame

参照試料

Wavelet解析による境界強調処理

8

Image Denoising using Curvelet-Wavelet Transform

□ Wavelet transform (WT)

WT can decompose a signal into a several scales that represent different frequency bands using series of wavelets: such property can be used for denoising. However, the wavelets lack of geometrical property in 2D & 3D.

□ Curvelet transform (CT)

CT is one of the geometric/directional wavelets that splits the whole frequency domain into multiscales and multidirections=> more accurate for image representation. However, not perform well in filtering noise as WT.

Wavelets vs. curvelets: accounting for edges

Image Denoising using Curvelet-Wavelet Transform

□ Wavelet transform (WT)

WT can decompose a signal into a several scales that represent different frequency bands using series of wavelets: such property can be used for denoising. However, the wavelets lack of geometrical property in 2D & 3D.

□ Curvelet transform (CT)

CT is one of the geometric/directional wavelets that splits the whole frequency domain into multiscales and multidirections=> more accurate for image representation. However, not perform well in filtering noise as WT.

```
Combined Curvelet-Wavelet denoising (CWD) :
```


> The combination of CT and WT may provide a better solution than using them individually.

Image Contrast Enhancement Using Two Methods

After denoising, the contrast of the image is enhanced with two methods.

Method 1: Wavelet-based mulstiscale edge stretching

Method 2: Local deviation

$$f_{2}(x, y) = \frac{f_{1}(x, y) - M_{1}}{M_{2} - M_{1}} \times M_{g}$$

 M_1 is the minima and M_2 is the maxima of the input image f_1 among the neighborhood pixels, Mg is the maximum gray level value of the input image.

Results of Image Contrast Enhancement

Fig. 8 Results of enhancement x-ray image with various methods: (a) original image, (b) enhanced by histogram equalization, (c) enhanced by wavelet-based edge stretching, (d) enhanced with local deviation

> The method using local deviation can enhance an image with very low contrast.

Results of Image Contrast Enhancement

Fig. 8 Results of enhancement x-ray image with various methods: (a) original image, (b) enhanced by histogram equalization, (c) enhanced by wavelet-based edge stretching, (d) enhanced with local deviation

> The method using local deviation can enhance an image with very low contrast.

Evaluate Steel Wires in PC with Enhanced Image

- In the enhanced image, several steel wires can be identified;
- Unfortunately, can not to identify their location from the overlapped image => not able to evaluate their size;

Solution:

- Partial CT & Tomosynthesis with 3.95 MeV x-ray to reconstruct 3D image.
- Pencil beam with collimator => ROI inspection.

Quantitative Evaluation Method by Radiography

- Lack of necessary prior information
- Take two images at different distance between source and detector
- Analyze the radius in imaging to estimate real radius

The distance between source and detector is D $D_1 - D_2 = \Box L$ According to the triangle relationship $\begin{cases} \sin(\theta_1/2) = \frac{R}{D_1} \\ \tan(\theta_1/2) = \frac{R_1}{L_1} \end{cases} \quad \begin{cases} \sin(\theta_2/2) = \frac{R}{D_2} \\ \tan(\theta_2/2) = \frac{R_2}{L_2} \end{cases}$ The real radius is estimated as $R = \Box L / \left(\frac{\sqrt{L_1^2 + R_1^2}}{R_1} - \frac{\sqrt{L_2^2 + R_2^2}}{R_2} \right)$

Quantitative Evaluation Method by Radiography

Real radius	1.5mm		Beam source	Object	Detector
R 1	1.84mm at L1=100mm	50keV X-ray tul		Al rod in plastic sample	CCD camera
R2	2.80mm at L2=40mm	 Geometry layout Higher detector resolution 			
R	1.4986mm)
Error	0.09%	Boundary enhancement			
^{2014/8/25} Experiment date: 2014/5/22			Evaluate di	ameter of inner	r rod 16

Quantitative Evaluation Method by Partial CT

Pixel number

Pitch

Experiment date: 2014/4/22

Scanning condition	3.95Mev
Angle range	0°~360°
View number	600
Distance between source and detector	1763mm
Distance between source and rotation center	1153mm

 2048×2048

200um

ROI reconstruction with limited angle range 17

Quantitative Evaluation Method by Partial CT

	Min. (mm)	Er	ror	Square	
Wire	360°	90°	360°	90°	360°	90°
1	6.85	10.05	2.14%	43.57%	0.046%	18.984%
2	6.90	15.75	1.43%	125%	0.020%	156.250%

- Imaging denoisng and enhancement is necessary
- Scattered X-ray noise affects the accuracy

60°x2スキャンCTでほぼ円形の再構成に成功(次回発表します)

Quantitative Evaluation Method by Tomosynthesis

[1]法政大学理工学部応用情報工学科 尾川研究室

Quantitative Evaluation Method by Tomosynthesis

Experiment date: 2014/6/20

Real diameter	7mm
Estimated diameter	6mm
Error	14.29%

Section

 Plane
 20

 [1]法政大学理工学部応用情報工学科 尾川研究室

Quantitative Evaluation Methods Comparison

Method	Application	Improvement		
Radiography	 Evaluate diameter of single inner RC rebar Easy to apply 	Geometry layoutDetector resolutionBoundary enhancement		
Tomosynthesis	 Evaluate diameter of PC wire within bundles Several scanning 	 Scattered X-ray noise reduction Contrast strengthening 		
Partial CT	 Evaluate diameter of PC wire within bundles Projection in limited angle range 	 Scattered X-ray noise reduction Imaging denoising and enhancement 		

X線発生装置 300keV X線管 X-Band Linac 950keV X-Band Linac 3.95MeV X-Band Linac 6MeV エネルギー High Low 対象物 ~1cm厚 鉄配管 ~3cm厚鉄配管 ~1m厚 コンクリート ~2m 厚コンクリート 2次元検出器 フラットパネル 本研究で開発する領域 イメージングプレート SPECT CdTe

MeV X線に対して10%以上の検出効率

高エネルギーX線検出用積層型シリコンストリップ型検出器の開発 『JST原子力基礎基盤戦略研究イニシアティブ』

Large Structural Analysis

非破壊検査による健全度評価

高出力X線や中性子源による コンクリート内部の可視化

sealing with aluminium tape

▶ 鋼材の腐食率やコンクリートの状態が非破壊で把握

950keVシステムの法順守

- ・
 か射線障害防止法に該当 しない
- 電離放射線障害防止規則 に準じて、局所遮蔽設定、
 1.3mSv/3 monthsの管理区 域の設定と管理
- 新規製作の場合、製作地の
 労働基準局に申請
- ・ 試験実施地では申請不要
- 廃棄時は手続きなし

3.95MeVシステムの法順守

- ・
 か射線障害防止法の平成17年度変更によって、橋梁に限って4MeV以下までその場検査が可能となった
- ・原子力規制庁に使用場所変更届出し、確認を得る。
- ・電離放射線障害防止規則に準じて、局所遮蔽設定、
 1.3mSv/3 monthsの管理区域の設定と管理
- 新規製作の場合、放射線障害防止法に基づき、原子 力規制庁に申請
- 試験毎に原子力規制委員会に、使用場所変更請出
- 廃棄時は手続きあり

橋梁特定検査への適用へ

- ・ 平成24年笹子トンネル天井板落下事故以降、社会インフラの安全性向上のため、平成26年度より5年に一度の定期検査(目視・打音等によるスクリーニング)が義務付けられた。
- 定期検査でのスクリーニングの後、さらなる詳細検査箇所を摘出し、特定検査 を実施。そこへの適当を目指したい。
- 当方は、目視・打音等によるスクリーニング、さらなる詳細検査箇所を摘出、X 線検査実施、構造強度劣化評価、補修のプロセスは、化学工場桟橋鉄筋コン クリートにて実施経験済み。
- X検査手法として、X線源は950keV/3.95MeVシステムの使い分け、検出系はX 線フラットカメラ、イメージングプレート、新規開発の高エネルギーX線カメラ、内 部構造再構成はマルチ投影法、部分角度CT、Tomosynthesis等の最適組み合 わせを採用することになる。今後のその場検査の経験を反映させていきたい。
- 安全対策につき、放射線障害防止法に順じた原子力規制委員会への使用場 所変更届出、電離放射線障害防止規則に順じて、局所遮蔽設定、1.3mSv/3 monthsの管理区域の設定と管理

まとめ

- 東大・アキュセラ共同開発体制により、東海村にて、可搬型
 950keV/3.95MeVXバンド(9.3GHz)ライナックX線源が完成された。
 設計仕様すべて達成された。
- 操作性改良950keVシステムにて、実用その場検査が定常化。来 年度は国際展開検討。
- マルチ投影法・部分角度CT法・Tomosynthesis・Waveletノイズカット境界強調画像処理法により、コンクリート内部鉄筋の形状を 1mm程度で評価に目途。
- 950keV,3.95MeV/6MeVX線源用高感度シンチレータおよびX線カメラの開発中。
- 3.95MeVシステムの管理区域外使用において、原子力規制委員会に使用場所変更届出し、8月にヒアリング。安全確認後、土木研究所・国土総合技術政策研究所での実機大型切り出し試料で演習。その後茨城県と共同で県内橋の検査を開始。
- ・ 全国70万橋の特定検査への適用を目指した。

謝辞

CT技術に関いて(株)XIT小石川篤氏、村田健太郎氏、他

TOMOSYNTHESISに関いて (株)AXION-JAPAN 櫻井栄男氏、他 法政大学 尾川浩-教授、貝吹太志研究員