WOOPE  —  運転E   (05-Aug-2009   13:15—14:15)

Paper Title Page
WOOPE01 SPring-8蓄積リングの現状 60
 
  • M. Takao
    高輝度光科学研究センター
 
 

高輝度放射光光源であるSPring-8蓄積リングの運転概況と、マシン性能の維持、改善の主なものについて報告する。1)非線形力学の安定性改善のため長直線部(SPring-8蓄積リングの特徴である30 m長の自由空間)直近に新たに導入した六極電磁石の効果、特にダイナミックアパーチャーの拡大について。2)高輝度放射光光源にとって重要なパラメータであるカップリングの補正とその現状(補正前後のカップリング比: 0.7 % → 0.2 %)。3)放射光源リングの可能性の一つである短パルス放射光生成の試験について。また、10年後を見据えて世界最先端の放射光施設であるためのアップグレード計画が議論されているが、その概要についても紹介する。

 
WOOPE02 KEKB加速器の現状 63
 
  • H. Koiso, T. Abe, K. Akai, M. Akemoto, A. Akiyama, M. Arinaga, K. Ebihara, K. Egawa, A. Enomoto, J. Flanagan, S. Fukuda, H. Fukuma, Y. Funakoshi, K. Furukawa, T. Furuya, K. Hara, T. Higo, H. Hisamatsu, H. Honma, T. Honma, K. Hosoyama, T. Ieiri, N. Iida, H. Ikeda, M. Ikeda, H. Ishii, A. Kabe, E. Kadokura, T. Kageyama, K. Kakihara, E. Kako, S. Kamada, T. Kamitani, K. Kanazawa, H. Katagiri, S. Kato, T. Kawamoto, S. Kazakov, M. Kikuchi, E. Kikutani, K. Kitagawa, Y. Kojima, I. Komada, K. Kudo, N. Kudoh, K. Marutsuka, M. Masuzawa, S. Matsumoto, T. Matsumoto, S. Michizono, K. Mikawa, T. Mimashi, S. Mitsunobu, T. Miura, K. Mori, A. Morita, Y. Morita, H. Nakai, H. Nakajima, T. Nakamura, K. Nakanishi, K. Nakao, S. Ninomiya, M. Nishiwaki, Y. Ogawa, K. Ohmi, Y. Ohnishi, S. Ohsawa, Y. Ohsawa, N. Ohuchi, K. Oide, M. Ono, T. Ozaki, K. Saito, H. Sakai, Y. Sakamoto, M. Sato, M. Satoh, Y. Seimiya, K. Shibata, T. Shidara, M. Shirai, A. Shirakawa, T. Sueno, M. Suetake, Y. Suetsugu, T. Sugimura, T. Suwada, Y. Suzaki, S. Takano, S. Takasaki, T. Takenaka, Y. Takeuchi, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, Y. Yamamoto, Y. Yano, K. Yokoyama, M. Yoshida, M. Yoshida, S. Yoshimoto, K. Yoshino, D. Zhou, Z. Zong
    高エネルギー加速器研究機構
 
 

KEKB加速器は2007年1月に超伝導クラブ空洞を導入し、同年10月以後、順調にクラブ交差による実用運転を行なっている。クラブ交差で高いルミノシティを達成するには、従来のレベルを超えた精密な誤差補正とビーム衝突調整が不可欠である。その一つとして、今期新たに、電子・陽電子両リングに合わせて28台の歪6極磁石を設置し、衝突点における水平垂直結合の運動量依存性を補正したが、この補正が突破口となって、クラブ以前の記録17.6/nb/sを大きく上回るピークルミノシティ20.84/nb/sが達成された。また、1日・7日間などの積分ルミノシティも記録を更新し、現在総積分ルミノシティは953/fbに達している。入射ビームをパルス毎に切り替えてKEKB両リングと放射光リングの3者に同時入射する技術が最近実用化され、衝突調整の効率が向上したことも、今回の成果に繋がっている。

 
WOOPE03 コンパクトERL建設の進捗状況 66
 
  • Y. Kobayashi, S. Sakanaka, K. Satoh, T. Kasuga, H. Kawata
    高エネルギー加速器研究機構
  • R. Hajima
    日本原子力研究開発機構
  • N. Nakamura
    東京大学物性研究所
 
 

高エネルギー加速器研究機構は、エネルギー回収型リニアック(ERL)に基づく次世代放射光源を将来計画と位置付け、その実現に向けたR&Dを行うべくコンパクトERL建設へ向けて具体的な作業を開始した。ERLで最も重要な装置は、超高輝度の電子ビームを発生できるフォトカソードDC電子銃と、大電流のビームを高電界で加速できる超伝導空洞である。ERL計画推進チームでは、これらの装置を開発しつつ、コンパクトERLを設置する予定の東カウンターホール(旧陽子シンクロトロン実験室)の改修、インフラの増強、ヘリウム冷凍機の整備を行っている。 本学会では、コンパクトERLの進捗状況と今後の予定について報告する。

 
WOOPE04 J-PARCハドロン実験施設の建設とビームコミッショニング 70
 
  • Y. Sato, K. Agari, E. Hirose, M. Ieiri, Y. Katoh, A. Kiyomichi, M. Minakawa, R. Muto, M. Naruki, S. Sawada, Y. Shirakabe, Y. Suzuki, M. Takasaki, H. Takahashi, K. Tanaka, A. Toyoda, Y. Yamanoi, H. Watanabe
    高エネルギー加速器研究機構
  • H. Noumi
    大阪大学核物理研究センター
 
 

J-PARCハドロン実験施設は、50GeV陽子シンクロトロン(MR)から取り出された陽子ビームを実験室(ハドロン実験ホール)の二次粒子生成標的に照射し、K中間子等の二次粒子を発生させ、それらを用いて様々な原子核・素粒子物理学実験を行う施設である。MRにおいて30GeVに加速された陽子ビームは、3次共鳴を用いた遅い取り出しシステム(取り出し時間0.7秒)によって取り出され、ハドロン実験ホールに輸送される。2009年1月27日にMRからの最初の取り出し試験を行い、同日午後7時35分にハドロン実験ホール最下流のビームダンプまで無事輸送されたことを確認した。本講演では、ハドロン実験施設の建設とビームコミッショニング、そして今後の計画について報告する。