Proceedings of the 24th Linear Accelerator Meeting in Japan (July 7-9, 1999, Sapporo, Japan)

(P8-30)

BEAM CHARACTERISTICS OF FEL LINAC AT NIHON UNIVERSITY II

K.Yokoyama*, I.Sato, K.Hayakawa, T.Tanaka, K.Sato, Y.Hayakawa, I.kawakami, Y.Matsubara, H.Nakazawa*, T.Sakai*, K.Kanno*, S.Anami**, S.Fukuda**, H.Kobayashi**, A.Enomoto**, S.Ohsawa**, S.Yamaguchi** and T.Kamitani**

> Atomic Energy Research Institute, Nihon University 7-24-1 Narashinodai, Funabashi, 274 -8501 Japan *College of Science and Technology, Nihon University 7-24-1 Narashinodai, Funabashi, 274 -8501 Japan **High Energy Accelerator Research Organizasion, KEK 1-1 Oho, Tsukuba, 305-0801 Japan

Abstract

The transverse emittance of the electron beam from the FEL linac at Nihon University have been estimated by the measurement of the beam size as a function of the strength of a quadrupole magnet at the electron energy of 80 MeV. The normalized emittance in vertical and horizontal directions has been estimated to be 63π mm mrad and 107π mm mrad, respectively.

日大 FEL 用リニアックの加速ビーム特性 Ⅱ

1. はじめに

日本大学電子線利用研究施設^[1]では、紫外線領域 における自由電子レーザー(FEL)の発振のために、 電子線形加速器の性能改善を行っている。FELの利 得は、電子ビームの尖頭電流、アンジュレーター、 電子ビームのエネルギー分散、エミッタンス等の性 能に依存する。ここでは、日大 FEL 用電子リニア ックの加速器出口でのエミッタンスを測定した結 果と加速器入射部^[2]における空間電荷効果を取り 入れたビーム輸送シミュレーションの結果を報告 する。

2. 測定の原理と方法

粒子ビームのエネルギーが一定のとき、ビーム集 東系を用いてエミッタンスを測定できる。ビームの 位相空間(横方向の位置および運動量)における分 布が楕円をしていると仮定すると、ビームの半径 r [m]は、その上流に置かれた四極電磁石の磁場の強

度 Q [m⁻¹] (ただし、 $Q = \frac{e}{P} \int \frac{dB_y}{dx} dz$) にしたがって 双曲線的に変化する。このときビームエミッタンス ε とこの双曲線の極小点 r_{\min} 、漸近線の傾き k(= Lr_0)の間に次の関係がある^[3]。

Е	=	$r_{\min}r_0$	_	kr_{min}	(1)
		L		L^2	(1)

ここで L は四極電磁石からビーム径の測定点までの自由空間長、r₀は四極電磁石の位置でのビーム半径である。

この原理から、Qを変えてrを測定することによ

って、ビームエミッタンスを求めることができる^[4]。 このとき位相空間上のビーム分布は、自由空間や加 速を伴わない集束レンズを通過すると、その面積は 保存されて形状のみが変化する。

エミッタンス測定時の幾何学的配置を図 1 に示 す。ビームの半径 rの測定には、ビームプロファイ ルモニター(PM06)上の電子ビームの断面像を、鏡で 望遠鏡に導き拡大して CCD カメラを用いて撮影し た。この画像をモノクロのモニターテレビに出力し、 デジタルスチルカメラで撮影しパソコンに取り込 んで処理した。四極電磁石 1 は、x 方向又は y 方向 のみを励磁した。電流値はそれぞれ約 0.1A づつ変 えた。撮影した画像の輝度分布を、電子ビームの密 度分布に比例しガウス分布をしていると仮定して 1 σ のビーム半径 rを測った。図 2 に画像処理をした 写真を示す。写真に写っている蛍光板の目盛りは 3mm 間隔である。

3. 結果

実験の時の電子ビームエネルギーは下流の偏向 電磁石で測定して 80MeV であった。この時の各ビ ーム電流モニターの電流波形を図 3 に示す。CM02 はバンチャー出口で 260mA、CM03 は 4m 加速管入 口で 120mA 、CM04 は 1 本目の 4m 加速管出口で 80 mA、CM05 は最後の 4m 加速管出口で 80 mA で ある。測定で得られたビーム半径の変化を最小二乗 法で双曲線に近似した結果を図 4 に示す。y 方向の 測定では、四極電磁石 1 のうち中央の 1 台を励磁し ているが、x 方向の測定では、両端の 2 台を励磁し

図1. エミッタンスの測定原理と測定時の幾何学的配置

ているので、焦点距離の補正を加えた。この結果 x 方向のエミッタンスは $0.68 \pm 0.09 \pi$ mm・mrad、y 方向のエミッタンスは $0.40 \pm 0.09 \pi$ mm・mrad にな った。規格化エミッタンスはそれぞれ ϵ_{nx} =106.6 ± 13.9 π mm・mrad、 ϵ_{ny} =63.1 ± 13.8 π mm・mrad であ る。x 方向の規格化エミッタンス ϵ_{nx} は y 方向の規格 化エミッタンス ϵ_{ny} より大きい。

図3. コアモニターによる電流波形。

4. 入射部における空間電荷効果の影響

加速器入射部において空間電荷効果をデスクモ デル^[5]で取り入れて行った電子ビーム輸送シミュ レーションの結果を図5に示す。ただし、空間電荷 効果の影響がはっきり見えるようにビームローデ ィングの効果を除いて計算した。縦軸はRFに対す る電子の位相を表わし、横軸は順にプリバンチャー、 ドリフトスペース、バンチャー内での電子の位置を 表わす。DC電子銃から取り出されたビームは、バ ンチャーの入口付近でバンチが形成され、その後光 速に近づく。シミュレーションでは、電子銃からの 電子ビームを実際の運転時の取り出し電流 400mA に合わせて計算した場合は、進行方向のバンチの形 成には空間電荷効果の影響はほとんど見られない。

図 2. ビームプロファイルモニター写真。x 方向を励磁したとき(上)、および y 方向を励 磁したとき(下)。(エネルギー 80 MeV)

スケール: CM02: 200mA/div、CM04: 40mA/div、 CM03、CM05: 100mA/div、横軸: 5 µ sec/div

このシミュレーションに用いた加速パラメーター を表1に示す。計算ではリニアックの実際の加速に 近い条件を選んで行った。電子銃からのビーム電流 を2.0A にして計算した場合は図5の下の図で示す ように空間電荷効果の影響がDRIFT1で顕著に表れ ている。

図 5. 空間電荷効果を取り入れた入射部におけるビーム 輸送シミュレーション

表 1. シミュレーションに用いた加速器入射部の主な パラメーター

加速周波数	2856.00	MHz
直流電子銃電圧	100.0	kV
電子銃からのビーム電流	0.40	А
プリバンチャー入力電力	0.5	kW
バンチャー入力電力	2.6	MW

5. まとめ

これまでの計算解析と測定結果から、日本大学電 子線利用研究施設の自由電子レーザー用電子線形 加速器の加速ビーム特性^[6]について以下のことが 分かった。

アンジュレーター^[7]に入射する電子ビームの y 方向のエミッタンスは約 0.4π mm·mrad、x 方向のエミッタンスは約 0.7π mm·mrad であった。

しかし、例えば波長 500nm の光と電子ビームが 効率よく相互作用するエミッタンスは 0.16 π mm·mrad 以下である。日大の電子線形加速器は性能 の改善を行っているが、電子ビームのエミッタンス を 1/2 以下に小さくすることが今後の重要な課題と 考えられる。今回の実験結果を他施設の加速器のビ ーム特性と比較すると、FEL における可視光 500nm 発振の可能性はあるが最終目的である紫外線領域

(300nm)の発振を目指すには、電子ビームの性能 を今以上に良くしなければならない。シミュレーシ ョン結果から予想されることは、電子ビームがバン チャーに入ってすぐのところでバンチが形成され るので、電荷密度が極端に大きくなり、エミッタン スを悪くしている可能性が高い。

電子ビームをバンチさせると空間電荷効果によ り横方向に広がる性質があるため、一般にエミッタ ンスが悪化する。エネルギーが高くなると空間電荷 効果が小さくなるため、エミッタンスはバンチを形 成する入射部でほぼ決まると考えられる。

参考文献

- [1] I.Sato et al., Proc. of this Meeting.
- [2] T.Tanaka et al., Proc. of 23rd Linear Accelerator Meeting. In Japan, (1998) 163.
- [3] Karl L.Brown et al, SLAC-75, Rev.3 (1972) 104.
- [4] A.Enomoto et al., Proc. of 10th Linear Accelerator Meeting in Japan, (1985) 1.
- [5] G.W.Peterson et al., IEEE Trans. Nucl. Sci. NS-16 (1969) 214.
- [6] K.Yokoyama et al., Proc. of 23rd Linear Accelerator Meeting in Japan, (1998) 199.
- [7] H.Nakazawa et al., Proc. of 23rd Linear Accelerator Meeting In Japan, (1998) 84.