Proceedings of the 24th Linear Accelerator Meeting in Japan (July 7-9, 1999, Sapporo, Japan)

[P7-39]

PROMISING PERFORMANCE OF THE Nb/Cu CLAD SEAMLESS SUPERCONDUCTING RF CAVITIES

T. FUJINO, V. PALMIERI*, K. SAITO, H. INOUE, N. HITOMI, S. NOGUCHI, M. ONO, E. KAKO, T. SHISHIDO, and Y. YAMAZAKI

High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba-shi, Ibaraki-ken, 305-0801 Japan

> *Istituto Nazionale di Fisica Nucleare Laboratori Nazionali di Legnaro (INFN/LNL) Via Romea 4-35020 Legnaro (Padova) Italy

Abstract

For the future large application of superconducting RF cavities, one has to faburicate cheaply the cavities with high gradients. We propose to fabricate the seamless cavity out from Nb/Cu clad material as unnecessary electron beam welding process and low fabrication cost. We made a feasibility study fabricating a 1.3 Ghz Nb/Cu clad single cell cavity out of the clad sheet material. Three single cell Nb/Cu clad seamless cavities were fabricated by the collaboration with INFL-LNL in Italy. In this paper, the cold test result of the cavity of seamless type obtained by spinning will be presented. The maximum performance of a best cavity was Eacc=25.1 MV/m with Qo= 2.5×10^{10} at a temperature of 1.4K. It is Very Hopeful.

有望なNb/Cu クラッドシームレス超伝導加速空洞の性能

1. はじめに

KEKでは、高電界発生と経済性の両面を兼ね備え た空洞として、高価なニオブ材の減量と煩雑な電子 ビーム溶接作業を減らした、Nb/Cuクラッドシーム レス空洞の開発を行っている。この空洞は、薄肉の ニオブを厚肉の銅で包んだクラッドシームレス管を 液圧バルジ法で一体成型するもので、比較的加工度 が小いのでニオブ表面に割れを生じない。空洞用材 のシームレス管は、Cu/Nb/Cuの三層構造の肉厚クラ ッド素管をHIPで作り、これをバルジ成型に適合す る管径や肉厚の定寸管に伸管する。これらクラッド 管を含む一連の空洞製作に関する開発は(株)東芝 との共同研究で行っている。

これまでに空洞や管の開発を進める一方、早期に

Nb/Cuクラッド材空洞の可能性や問題点を見極める ために、KEKと共同研究の関係にある INFN-LNL(イ タリア)に於いて、爆着による Nb/Cuクラッド板を スピニング法で一体成型して3台の1.3 GHz 単空洞 を製作した。これらの空洞はそれぞれ KENZO-1、 KENZO-2、KENZO-3と命名し、KEK で性能測定し た。前回この結果の一部を報告した[1][2]。

今回測定を進めて行く中で、スピニング成型特有 のニオブ表面の割れの存在にも拘わらず、最大Q値 2.5×10¹⁰、最大加速電界25.1MV/mの性能が得られ、 Nb/Cuクラッド材空洞の有望性が見えてきた。また 前回示唆された熱起電力は、冷却の仕方とQ値の変 化から、熱起電力であると判断した。更に、外部磁 場による影響を測定した。これらにつて報告する。

2. 熱起電力の問題

空洞の冷却方法によるQ値や残留抵抗の違いを調 べて熱起電力であることを確かめた。もし熱起電力 の発生が原因で永久電流が存在して、このために性 能を制限しているのであれば、超伝導状態を破って 常伝導状態にして電流を消滅させれば性能は改善す るはずである。あるいは起電力の発生を抑えるため に、温度むらを作らない状態で、ゆっくり冷却すれ ば、これもまた空洞性能が向上するはずである。先 ず、急冷却して電流がトラップされたと思われる空 洞のQ値と、10K以上にウオームアップして常伝導 状態を約10分間保持して、トラップされた電流を消 滅して再冷却した空洞のQ値を比較する。図1に加

図1急冷時とウオームアップ後のQ値の比較

速電界とQ値の関係(Qo-Eacc カーブ)を示す。明らか

にウオームアップにより電流を消滅した方のQ値は 高い。次に、熱起電力の発生を抑えるようにゆっく り冷却した。急冷の場合とゆっくり冷やしたQ値と、 さらに同じ空洞をウオームアップしてしたもののQ 値の比較を図2に示す。ゆっくり冷やしたQ値は急 冷のものより高い。しかし、ウオームアップするこ とでさらにQ値の向上があり、小規模ながら起電力 の発生があることを意味する。また熱起電力の問題 は高加速電界でのクエンチによる発熱に於いても起 きてQ値が下がる。この場合もウオームアップする ことでQ値が回復する。図3にこの様子を示す。ウ

オームアップした空洞の最初の測定(図3、○)は 加速電界が16MV/mでクエンチした。クエンチ後の 測定(図3、□)ではQ値が下がったが、その後の

-246-

ウオームアップして再び測定(図3、+)したQ値 はクエンチ前に戻った。比較的ニオプ表面の割れが 少ない空洞のウオームアップ後の測定では、最大Q 値2.5×10¹⁰、最大加速電界25.1MV/mが得られ、ニ オプバルク空洞より高電界が得られた。図4に同じ RRR=100のニオプバルク空洞との比較を示す。

3. 外部磁場の影響

超伝導空洞は外部磁場の影響を受け易く、超伝導 状態にトラップされた磁場の影響で表面抵抗が増加 して空洞性能が落ちる。このことはビーム輸送系に 於いて、空洞が各種電磁機器と近接して配置される 際に問題である。このために空洞測定に使用してい るL-バンド超伝導空洞用簡易縦システム[3]のクラ イオスタットは磁気シールドが施されている。ニオ ブバルク空洞の外部磁場の影響に関しては小野氏等 により報告されている[4]。

クラッド空洞では、ニオブと銅の熱膨張係数の違 いから、冷却時のニオブに生ずる表面応力歪みによ る格子欠陥の存在が、ニオブバルク空洞より強いピ ン止め力を持つと想像し、磁場による影響が少ない ことを期待した。これを確認するためにソレノイド コイルにより、空洞ビーム軸に平行な磁場をかけて 空洞の性能を測定した。磁場の変更は常伝導状態で 行った。空洞の表面抵抗の温度依存性カーブのフイ

ッテングから求めた残留抵抗と磁場の関係を図5に

示した。図中ニオブバルク空洞の測定値[4]を〇て示 した。クラッド空洞の磁場による残留抵抗の増加は ニオブバルク空洞より大きい。

4. 考察

クラッド材空洞では、熱起電力による性能の劣化 を伴うが、ウオームアップすることでこの問題は避 けられる。今後この問題は物理的にメカニズム を解明して、空洞開発に役立てる予定である。 比較的割れの少なかった KENZO-2 空洞の良い結果 から、割れが発生しない液圧バルジ成型によるクラ ッド空洞を実現してさらに性能の向上をはかる。

外部磁場による影響では、ニオブバルク空洞に比 べ、30%程高いが、これはニオブ割れのために、磁 場が浸透し易いのかも知れない。

参考文献

[1] Fujino.T.et., al.," R&D of the Nb/Cu Clad Seamless Superconducting RF Cavities",
Proceedings of the 23rd Linear Accelerator Meeting in Japan, Tsukuba,, Japan, September 16-18, 1998, p.261-p.264.
[2]T.FUJINO,et., al.," R&D of the Nb/Cu Clad Seamless Superconducting RF Cavities",
KEK Proceedings, 98-12 February, 1999, A,
p.92-p.95.

[3] K.Saaito, et., al.," Quiick Vertical Test
System for L-band Superconducting RF Cavities",
Proceedings of the 21st Linear Accelerator
Meeting in Japan, Tokyo, Japan, September 30October 2, 1996, p.222-p.224.

[4] Ono. M. et., al.," The Effect of Weak Magnetic
Field on Surface Resistance of Superconductng
Cavity", Proceedings of the 23rd Linear
Accelerator Meeting in Japan, Tsukuba, Japan,
September 16-18, 1998, p,304-p.306.