Proceedings of the 24th Linear Accelerator Meeting in Japan (July 7-9, 1999, Sapporo, Japan)

(P7-38)

DEVELOPMENT OF AN L-BAND SINGLE-CELL NIOBIUM CAVITY WITH PORTS

T.Ota, S.Sukenobu, Y.Tanabe, K.Ohara, K.Takaishi, T.Sakai, M.Yamada, Y.Onishi E.Kako*, S.Noguchi*, M.Ono*, K.Saito*, T.Shishido*, Y.Yamazaki*

Toshiba Corporation

20-1, Kansei-cho, Tsurumi-ku, Yokohama, 230-0034 Japan
* High Energy Accelerator Research Organization (KEK)
1-1, Oho, Tsukuba-shi, Ibaraki-ken, 305-0801 Japan

ABSTRACT

An L-band(1.3GHz) single-cell niobium cavity with four ports on the beam pipes was fabricated in our company and tested at KEK. The maximum field gradient($E_{acc,max}$) of 24.5MV/m was attained in the cold test. In the present paper, surface preparation on the cavity and the experimental results of the cavity are presented.

Lバンドポート付き超電導加速空胴の開発

1. はじめに

当社は1995年より高エネルギー加速器研究機構 (KEK)と超電導加速空胴に関する共同研究を行っ ている。これまでに、2台のLバンド単セル超電導 空胴と1台の3セル超電導空胴を社内で試作し、性能 測定を行った。この結果、全ての空胴において最大 加速電界30MV/m以上を達成した[1,2]。

98年度は、より実機に近い形状の超電導空胴を開 発するため、高周波電力入力カプラーポート、ピッ クアップポート及び2本のHOM(Higher Order Mode) カプラーポートを取り付けたLバンド単セル超電 導空胴を社内で試作し、KEKにて性能を測定した。 ここでは、Lバンドポート付き超電導空胴の性能測 定結果について報告する。

2. Lバンドポート付き超電導空胴の仕様

Lバンドポート付き超電導空胴は、TESLA(TeV Energy Superconducting Linear Accelerator)計画用加 速空胴(9セル)をモデルにした単セル空胴である。 一方のビームパイプに高周波電力入力カプラーポ ートとピックアップポートを取り付け、他方のビー ムパイプに2本のHOMカプラーポートを取り付け る構造とし、入力カプラーは同軸型とした。

TESLA計画用超電導空胴の入力カプラーのQ値 を求める。空胴に供給する高周波電力を P_{total} 、ビー ムを加速する電力を P_b 、空胴壁における損失を P_{cav} とすると、これらの間には(1)式に示す関係が成り 立つ。

$$P_{total} = P_b + P_{cav} \qquad \cdots (1)$$

しかし、超電導空胴のQ値(Q₀)は非常に高いため、 P_bと比較するとP_{cav}は非常に小さくなる。つまり、 空胴に供給する高周波電力のほとんどがビームの 加速に使われる。よって、超電導空胴の入力カプラ ーのマッチング条件は(2)式で近似される。

$$P_{total} \cong P_b$$
 …(2)
空胴の加速電圧を V_{acc} 、シャントインピーダンスを R_{sh} とする

と、入力カプラーのQ値(Q_{in})は(3)式で表される。

$$Q_{in} = \frac{V_{acc}^2}{\left(\frac{R_{sh}}{Q_0}\right)P_b} \qquad \cdots (3)$$

ただし、 V_{acc} は空胴の有効長 ℓ を用いて(4)式で表される。

ここで、有効長ℓは波長λ(1.3GHzの場合λ=0.23m)

-242-

を用いて(5)式で表される。

 $\ell = \left(\frac{\lambda}{2}\right) \times \left(\tau \mathcal{V} \right)$ …(5)

TESLA計画の仕様では、 $V_{acc} = 25.9$ MV(25MV/m× 1.036m)、 $R_{sh}/Q = 1011\Omega$ 、 $P_b = 206$ kWである[3]。こ れらの値を(3)式に代入すると9セル空胴の入力カ プラーのQ値は $Q_{in} = 3.2 \times 10^6$ が得られる。単セル空 胴の場合はその1/9で $Q_{in} = 3.6 \times 10^5$ となる。実際に 超電導空胴を運転する場合は、空胴のQ値が仕様 ($Q_0 = 5 \times 10^9$)よりも低下することが考えられる。こ のため、 $Q_{in} = 3 \times 10^5$ 以下を目標とし、Cu製Lバンド 単セル空胴を用いて入力カプラーポートの取り付 け位置を検討した。この結果に、製作上及びハンド リングの都合を考慮に入れて、セルの中心からポー トの中心までの距離を120mmとした。本空胴につ いて、材質をCuとした場合の高周波特性を解析コ ードSUPERFISHを用いて解析した結果を表1に示 す。

表1Lバンドポート付き超電導空胴の高周波特性

Frequency	1296.63[MHz]	
R _{sh} /Q	110[Ω]	
G	265[Ω]	
E _{sp} /E _{acc}	1.85	
H_{sp}/E_{acc}	42.8[Oe/MV/m]	

3.Lバンドポート付き超電導空胴の製作

試作したLバンドポート付き単セル超電導空胴を 図1に示す。本空胴は、フランジ及び液体ヘリウム 容器接続用リング以外の材料は全て純Nb(東京電 解製、残留抵抗比RRR=200)を使用している。フラ ンジ及び液体ヘリウム容器接続用リングの材料は SUS316Lを使用しており、Nb製のビームパイプと はろうづけにより接合されている。なお、Nb材ど うしは電子ビーム溶接により接合した。

4. Lバンドポート付き超電導空胴の性能測定

極低温(~2K)における性能測定を2回行った。測 定では、入力カプラーポートを取り付けたビームパ

図1Lバンドポート付き超電導空胴

イプを上側にして置き、下側のビームパイプから高 周波電力を入力し、透過電力はピックアップポート に取り付けたアンテナからモニターした。空胴の表 面処理内容と測定結果についてまとめたものを表2 に示す。1回目の測定において、空胴を4.2Kから1.8K まで冷却しながら空胴の表面抵抗R_sを測定し、R_s の温度特性を求めた。これより、空胴の残留表面抵 抗R_{res}は約11nΩであった。高電界発生試験の結果を 図2の□に示す。図は空胴のQ値と加速電界Eaccの関 係を示したものである。測定温度は1.8~1.85Kであ った。Eacc=5MV/m辺りからEaccの増加と共にQ値が 著しく低下した。空胴壁に貼り付けた温度センサー の測定データから、Eacc=8MV/m辺りから空胴壁全 体の温度が上昇していた。Eacc=16MV/mまではX線 は検出されなかったが、Eacc=17MV/m直前でクエ ンチ(常電導転移)し、一時的にX線が検出された。 この時、セルの赤道部において局所的な発熱が見ら れた。最大加速電界は17.2MV/mで制限された。

表2ポート付き空胴の表面処理及び測定結果

		Measurements	
Test	Preparation	E _{acc,max} [MV/m]	R _{res} [nΩ]
1st	BP(90μm at eq.),EP(100μm),	17.2	11.0
	HR(1hr.),HPR(1hr.),Anneal,		
	HPR(1.5hr.)		
2nd	EP(50µm),HR(0.5hr.),	24.5	6.8
	HPR(1hr.)		

BP : Barrel Polishing, EP : Electropolishing, HR : Hot Rinsing, HPR : High Pressure Rinsing

図2ポート付き超電導空胴の性能測定結果

測定後、CCDカメラ[4]を使用して空胴内面を観 察した。この結果、セル赤道部には特に欠陥等は見 られなかったが、アイリス部には接合面が残ってい た。また、その近傍には直径0.2~0.5mm程度のピッ トが多数見られた。アイリス部の接合面が除去され るまでグラインダー処理を行ったが、その近傍にあ った多数のピットはそのまま残った。アイリス部に RT(Radiation Test)を実施し、溶接部内部の状態を調 査した結果、溶接部内部には多数のピットが存在す ることが分かった。これより、アイリス部表面のピ ットを除去しても内部のピットが表面に露出する と考え、グラインダー処理をせずにそのままの状態 で再度表面処理、性能測定を行った。

2回目の測定では、空胴のR_{res}は約6.8nΩであり前 回の測定結果より小さくなった。高電界発生試験の 結果を図2の■に示す。測定温度は1.65~1.78Kであ った。図より、E_{acc}=17MV/mまではQ値の低下はな く、X線も検出されなかった。また、前回の測定で 見られたような空胴壁全体の温度上昇は見られな かった。E_{acc}=17MV/m直前でクエンチし、セル赤 道部の数箇所において発熱が見られた。E_{acc}= 17.6MV/mからはX線が検出され、E_{acc}=19MV/mで 一度エージングされたが、その後Q値は著しく低下 し、加速電界の増加と共にX線量が増加した。これ より、空胴表面の汚染による7イールドエミッションが発生し たと考えられる。E_{acc}=24MV/m以上でクエンチを 繰返し、最大加速電界は24.5MV/mで制限された。 2回目の測定では、空胴壁全体の温度上昇は見ら れなかったことから、空胴内面を電解研磨したこと により発熱の原因となっていた目視できない程度 の小さな欠陥等をかなり除去することができたと 考えられる。しかし、局所的な発熱が前回の測定の 時と同じ位置(セル赤道部の一部)で検出されたこ とから、赤道部の欠陥は完全には除去できなかった と思われる。また、7イールドエミッションが発生しているこ とから、空胴表面の洗浄が未だ不十分であったと考 えられる。本空胴の性能はE_{acc.max}= 24.5MV/m(@Q値 5×10⁹)であり、TESLA計画用超電導空胴の仕様 (E_{acc.max}=25MV/m)をほぼ満足した。

5. まとめ

社内で試作したLバンドポート付き単セル超電導 加速空胴の性能を評価した。この結果、加速電界 E_{acc}=19MV/mよりフィールドエミッションが発生 し、最大加速電界は24.5MV/m(@Q值5×10⁹)で制限 されたが、TESLA計画用超電導空胴の仕様をほぼ 満足した。今後は本空胴用に開発したクライオモジ ュールに本空胴を組み込み、冷却試験及び高電界発 生試験を行う予定である。

謝辞

超電導空胴の表面処理をしていただいた野村鍍 金株式会社の皆様に深く感謝致します。

参考文献

- T.Ota et al., "First Measurement of L-band Superconducting Cavity Fabricated in TOSHIBA", Proc. of the 21st Linear Accelerator Meeting in Japan(1996).
- [2] T.Ota et al., "Development of a High Field Threecell Superconducting Cavity", Proc. of the 23rd Linear Accelerator Meeting in Japan(1998).
- [3] B.Aune, "TESLA Test Facility : Status", Proceedings of the 7th Workshop on RF Superconductivity(1995).
- [4] K.Saito et al., "Inspection System with a CCD Camera for L-band Superconducting RF Cavities", Proc. of the 21st Linear Accelerator Meeting in Japan(1996).

-244-