Proceedings of the 23rd Linear Accelerator Meeting in Japan (September 16 - 18, 1998, Tsukuba, Japan)

(A17a09)

In -house Production of Superconducting L-Band Niobium Single Cell Cavities

S.Nakamura, K.Saito*, S.Noguchi*, M.Ono*, E.Kako*, T.Shishido*

Hitachi,Ltd. Hitachi Works 3-1-1, Saiwaicho Hitachi-shi Ibaraki-ken,Japan *High Energy Accelerator Research Organization (KEK)

Abstract

Two superconducting L-Band niobium single cell cavities were produced. The parts of the cavity were welded by electron beam welding. The first cavity was polished mechanically and chemically^{*} on its inside surface.(*"Chemically" means chemical polishing and electropolishing.) We measured its performance without annealing at first. Its Q value and maximum gradient were very low because of hydrogen absorption in Nb which was damaged by mechanical polishing. Next, the cavity was annealed for degassing H₂, and the Q value was improved remarkably. The second cavity was polished only chemically. It achieved the gradient Eacc=24.8 MV/m and its Q value was 1.97 × 10¹⁰. After keeping the second cavity temperature at 95K for 2.5 hours, Q-disease was not observed.

超伝導 L-バンド Nb 製単セル加速空洞の製作

1.はじめに

超伝導空洞は空洞表面の発熱が少なく、内部に 蓄積することができるエネルギーが大きいため、 高加速電界が得られる。その結果、リニアックを コンパクトに建設できるメリットがある。Nb 製超 伝導加速空洞製作技術の確立のため、L-バンド単 セルキャビティーを2台試作した。溶接はEBW とし、赤道部溶接は空洞外側より行なった。この 時、空洞赤道部内側にシームが出来るが、1台は このシームを機械的に研磨して削り取った後に化 学研磨と電解研磨を実施し、残りの1台は機械研 磨を省略して化学研磨と電解研磨を行なった。こ こでは空洞製作と実験結果について報告する。

2.空洞の試作

図1 空洞寸法図

今回試作した空洞の形状寸法を図1に示す。空 洞は RRR200 の Nb 板からハーフセル、ビームパ イプを成形し、Nb 製フランジと溶接した構造であ る。本空洞の仕様と測定値を表1に示す。

表1 空洞仕様と測定値

No	項目	仕様	H-1	H-2
1	共振周波数[GHz]	1.926	1.928	1.929
2	単セル部長さ[mm]	115.6	114.1	115.9
3	赤道部外直径[mm]	210.4	210.5	210.7

1)ハーフセル成形

ハーフセルは Nb 板を 7×10⁶Paの圧力で深絞り
成形した。Nb ブランク材は φ 280mm、厚さ
2.5mm の円板である。従来ブランク中心には位置
合わせのため φ 7mmの穴をあけ成形していたが、
本空洞では割れ及び減肉を防ぐため、中心穴径を
φ 50mm として深絞り成形を行なった。[1]
2)溶接

溶接は酸化防止のため、電子ビーム溶接(EBW) を採用した。溶接装置の仕様を表2に示す。

表2 溶接装置仕様

No.	項目	仕様			
1	電圧[kV]	60			
2	真空度[Torr]	1×10^{-5}			

溶接縮みはハーフセルあたり 0.2mm としトリ ム治具にて加工した。実際の溶接縮みは単セル当 たり 0.4mm であり、想定した長さと同じだった。

3.表面処理

空洞は2個製作し内面処理を変えた。H-1 はバ レルによる機械研磨(BP)と、化学研磨(CP)、電解 研磨(EP)を併用し、H-2 は BP を省略し CP と EP を行なった。内表面処理の詳細を表 3 に示す。H-1 に関しては EP 後の測定では Q 値が低くかったた め、熱処理を行ない再測定を行なった。熱処理中 の各ガス成分の分圧を四極質量分析計にて測定し たが空洞温度が 500℃を超えたところで H₂の分 圧は急激に増加し 1×10⁻⁴[Pa]に達した。また 765℃で 5 時間アニールした後の H₂の分圧は 2× 10⁻⁵ [Pa] であった。

No.	項目	H-1	H-1	H-2		
		(1st)	(2nd)			
1	機械研磨(BP)	100	無	無		
	平均[µ m]					
2	化学研磨(CP)	150	無	150		
	平均[µ m]					
- 3	電解研磨(EP)	50	無	50		
	平均[μ m]					
4	熱処理	無	$765^{\circ}C$	無		
			imes 5 hr			
5	洗浄(HPR)	9Mpa	9Mpa	9Mpa		
		1hr	1hr	1hr		

表 3 内表面処理仕様

図2 H-1空洞アニール時の分圧

CP 研磨量は空洞の重量変化量により管理した。 また EP 研磨厚は電解研磨時の総電流量より管理 した。内表面研磨後の研磨厚変化の分布測定位置 を図2、実測値を図3、図4に示す。測定は超音 波厚み計により行なった。BP は空洞赤道部が重点 的に研磨されるため、赤道部研磨量は研磨質量か ら計算した平均研磨量の2倍以上となった。

図3 H-1 空洞研磨量

図4 H-2空洞研磨量

H-1 空洞赤道部には4個所の大気中でのスポッ ト溶接を行なっている。1個所だけ溶接跡がはっ きりと残っている部分があった。この部分はBP 後にも跡が残っていたが、CP+EPを行なった段階 で肉眼では溶接跡を判別出来なかった。

4.実験結果

1)H-1 空洞測定

H-1空洞の測定結果を図5に示す。

H-1空洞の1回目の測定ではQ値、Eaccの最大 値ともにかなり低い値であった(▲)。原因はBPに よって生じた Nb 表面の欠陥にできた水素化合物 の影響と考えられた。このためH2脱ガスのための アニールを765℃で5時間行なった。アニール後 の実験結果を図5の■に示す。測定は4.2Kにて 行なった。スポット溶接跡での発熱の有無を確認 するため赤道部にカーボン抵抗を張り付け測定を おこなった。溶接スポットは赤道部に対角に4個 所行なった。この中でBP後に目視にて確認でき た1個所が発熱し、クエンチした。

H-1空洞実験を通してX線は観測されなかった。

アニール後のQ値は1.6Kと4.2K時の測定の比較にも関わらず2桁向上した。これによりBP後の脱H₂のためのアニールは不可欠であることがわかった。

図5 H-1空洞測定結果

2)H-2 空洞測定

図6に H-2 空洞の測定結果を示す。

測定は空洞温度を 1.8[K]に保ち行なった。1回 目測定(▲)で Eacc を上昇させていくと

Eacc>12MV/m で X 線が発生し Q₀ が急激に減少 した。この減少は空洞内に存在する不純物によっ て RF パワーが奪われる現象(コンタミネーショ ン)が起こったためと考えられる。しかし、Eacc が 19MV/m を超えた点で急に Q₀、Eacc 共に上昇 した。これは内部不純物が RF パワーを吸収しな い位置に移動(プロセスアウト)したものと考えら れる。プロセツアウトの後 Eacc=24.9MV/m にて クエンチし、これ以上 Eacc を上げることができ なくなった。次に Eacc=24.8MV/m から減少させ 測定(◆)を行なった。特性はほとんど同じであっ た。

図6 H-2空洞測定結果

3)Q-disease

高 RRR Nb 材を用いて製作した非アニール空洞

については 60[K]~120[K]で数時間放置すると Q 値が大幅に減少する現象(Q-disease)が報告され ている [2]。H-2 空洞を用い 95[K]で 2.5 時間保持 後 Q 値を測定した。結果は図 7 に示すように Q 値 は低下せず、Q-disease は観測されなかった(■)。

図7 95K,2.5 時間放置後の空洞 Q 値の変化

5.まとめ

2台の空洞を製作し、内面処理の方法を変えて 特性を測定した。BP を行なうと CP,EP 後の H₂ の吸着により Q 値が低くなるので脱ガスのための アニールが必要であることが分かった。また大気 中でのスポット溶接は目視で確認できないほど削 っも空洞性能に大きな悪影響を与えることがわか った。

空洞内部のシームに関しては赤道部 EBW を外から行なっても BP の必要はなく CP,EP のみで一定の性能が確保できた。 2 個の空洞の BP による性能の違いはは今回不確定な要素が多く比較出来なかった。また Q-diseases に関しては今回の実験では確認されなかった。

文献

[1] 中村 真他:「In -house Production of Superconducting L-Band Niobium Single Cell Cavities」第一回超伝導リニアック研究会 (1998.5.28-29 開催)予稿集(掲載予定)

[2] 斉藤 健治他:「Q₀-DEGRADATION DUE TO HYDROGEN IN HIGH PURE NIOBIUM CAVITIES」, Proceedings of the 18th Linear Accelerator Meeting in Japan, Tsukuba, 21-23 July 1993

[3] 斉藤 健治 他:「Importance of the electropolishing for the high gradient SC cavity fabrication」, Proceedings of the 22nd Linear Accelerator Meeting in Japan