MEASUREMENT OF WATER VIBRATION IN ATE LINAC

Seiki Morita, Takaaki Matsui, Akira Miyamoto, Koji Watchi, Seishi Takeda*, Hitoshi Hayano*, Takashi Naito*

E-CUBE Co., Ltd.

1077-158 Hino, Hino-shi, Tokyo, 191, Japan *High Energy Accelerator Research Organization 1-1 Oho,Tsukuba-shi, Ibarakiken, 305, Japan

Abstract

The water vibration of a 3-m long acceleration structure and Q-magnet in the ATF linac was measured for the study of piping method of cooling water. We observed the structure vibration of 1.4 μ mp-p in the horizontal direction. We could reduce the water vibration by adding support to the flexible pipe which is vibrating resonantly. The detailed mesurement is reported.

ATFリニアックにおける冷却水振動の計測

1. はじめに

リニアコライダーではQマグネットや加速管の振動に 対する要求が厳しく、地盤振動や冷却水により発生する 数10mm以上の振幅の振動が問題となっている。それらの うち特に加速管は必要冷却水流量が大きく、その冷却水 により発生する振動を抑制する研究が必要である。高エ ネルギー加速器研究機構に於いて試験加速器(ATF)が現 在稼動しているが [1]、その中のリニアックの加速管に ついて冷却水振動の計測と振動抑制の研究が開始された。 本稿では、ATF 1.54 GeV Sbard リニアックにおいて行った 非接触変位計を用いた振動計測方法及び現状の加速管と Qマグネットの振動を測定した結果について報告する。

2. 測定システム

計測装置の全体構成を図1に示した。センサーは静電 容量方式の非接触型で、1.0±0.5 mmの範囲を分解能1.0 µmにて距離変位を検出でき、その周波数帯域幅は1 kHz である。センサーは計測箇所毎にその架台距離を調整す る必要があるので手動のギア方式スライダーに固定した。 床置き型のセンサーサポート架台はCチャンネル鉄骨材 をベース板に溶接した物を作成し、底面にレベル調整用 のボルトネジを取り付けた。計測分解能に比べてこの固 定冶具の自己振動は0.2µmと十分に低く今回の計測レベ ル範囲では問題の無い事を確認した。実際の計測手順は、 変位信号をオシロスコープにて観測し、PCを用いてGPB を介して波形データ収集を行ない、同時にFFT処理によ り周波数成分を観測出来るようにした。このシステムに より容易に各コンポーネントの計測が可能となった。

3.変位センサーの校正

変位センサーの出力電圧と変位との関係を校正する為 に以下の測定を行った。センサーをハイトゲージに固定 し、架台基準表面からの距離を順次変化させて各距離に おける出力電圧を計測した結果を図2に示した。校正値 は0.825µmの距離変位あたり10mVであった。この測定 により分解能が0.1µm程度までモニターが出来る事を確 認した。変位計本体ではアンプゲイン、オフセットの調 整が出来るようになっているが、今回はその調整を行わ ず校正値を使用して実際の変位量を測定し補正を行った。

図2、距離変位に対する変位計出力電圧の関係

-234-

4. 振動測定

図1のシステムにより、まず始めにリニアック シールドを計測してセンサー固定架台の振動や設 置方法による振動ノイズが十分低いことを確認し た。その時の振動波形とFFT波形を図3に示す。 コンクリートシールドブロックはリニアックの床 上面に設置され、13トン/m²の荷重が安定にかかっ ている。これにより計測した壁面は床を基準とし た場合にセンサーバックグランド0.2 µmと同程度 であった。したがってこのバックグランド以上で の計測が可能である。振動幅は最大で223 nmp-pで あり、また周波数分布もフラットで、測定システ ムに問題の無いことを確認できた。

図3、シールドブロック振動の振動波形とFFT波形

図4、冷却水循環ポンプの振動波形とFFT波形

まず、冷却水循環装置のポンプ振動を計測した。 動作水量は5 kg/cm²圧力で2000 l/min である。この ポンプケースの横振動について測定した。図4 に 波形とFFT 波形を示した。振動の大きさは15 μ m p-pで、周波数は50Hzにピークが確認出来た。 加速管19本のうちL1加速管について振動計 測を行った。これらの各加速管には冷却水を5 $kg/cm^2 E 力、85 l/min の流量で流している。計測$ 位置は3m長加速管の中央部分のセルを縦横2方向について計測した。図5、図6に縦横振動の各波形とFFT 波形を示した。振動の大きさは横方向が $1.57 <math>\mu$ mpp、縦方向は0.66 μ mppであった。冷却 水ポンプの振動周波数分布と同様であったことか ら、ポンプ振動が配管内の冷却水により伝わる事 が原因と分かった。さらに、給水バルブを閉じた 場合には配管の共振振動が止まることを確認した。 加速管の接続部分には図7に示すようにフレキシ ブル管を使用して接続をしている。この管の共振 が加速管の振動の原因の一つであることが分かっ た。

図7に架台配管と断面図を示す。ヘッダーパイ プは往管帰管共に下部架台に金具にて固定されて いる。ヘッダー管と加速管の間はフレキシブル管 2本で配管されており、その中間が固定されてい る。片方のフレキシブル管はサポート無しに加速 管に接続されておりこの管の共振振動の影響を加 速管に及ぼしてしまう。これを防ぐ為にはフレキ シブル管を加速管側で架台に固定し、配管の共振 を防ぐ必要があることが分かった。ムーバーによ り架台は移動するのでヘッダー管側のフレキシブ ル管は固定出来ない。

図7中に示した矢印Aの配管の横方向振動を、固 定金具追加と無しで計測比較した。図8には固定 無しの計測値、図9には固定金具を追加した時の 計測値を示した。

SUPORT

図7、L1加速管全体配管(上)及び架台断面図(下)

この計測から固定金具の追加により5.78µmp-pの 配管振動を0.5µmp-pに抑えることが出来た。すな わち配管自体の共振振動は極力抑える必要の有る ことが分かった。

次に、3番架台に設置されている空冷式Qマグ ネットについて計測を行った。計測値はビーム方 向に1.0 μ mpp、横方向では0.3 μ mp-p、その周波 数分布には約49Hz のピークを観測できた。又、水 冷式Q-マグネットではビーム方向に約0.4 μ mp-p、 横方向に0.4 μ mppの摂動振動が観測された。これ らは、一部には加速管振動の影響を受けていると 考えられるが、ほぼバックグランドレベルである。

5.まとめ

静電容量型変位計を用いた今回の振動計測結果 により配管方法の改良が振動の一原因を減らす事 になる事を確認できた。この振動計測は開始され たばかりであり、今後は振動計の感度を上げ、配 管自体の改良により振動をより低減する開発研究 を行っていく予定である。

謝辞

KEK JLC ATF グループの皆様には貴重な助言を 頂きました。ここに厚く御礼申し上げます。

参考文献

[1] S.Takeda et.al. "1.54GeV ATF INJECTOR LINAC FOR JLC", Proc 第19回リニアック研究会