[P30-23]

ENERGY-SPREAD ESTIMATION FOR KEKB INJECTOR LINAC

T. Kamitani, F. Hanaki, A. Enomoto, S. Ohsawa, Y. Ogawa, J-Y Choi, H. Kobayashi

National Laboratory for High Energy Physics (KEK) 1-1 Oho, Tsukuba, Ibaraki 305, Japan

ABSTRACT

This paper reports a realistic estimation of beam energy-spread for KEKB injector linac. The spread was estimated using a simulation including the initial particle distribution in longitudinal phase space, the jitters of RF system, magnetic (de)bunching in non-isochronous system. Stress is put upon the improvement of the spread by the magnetic bunch compression system and the energy-spread compression system.

KEKB 入射ライナックのビームエネルギー幅の評価

1. 始めに

現在 KEK 2.5GeV 電子陽電子ライナックは KEKB 計画 のために改造を行っており、敷地の制限内で既存設備を 最大限有効利用するために J 字型のライナックとなる[1]。 電子ビーム(電荷量1nC)はまず1.5 GeV まで加速し、そ こで180度偏向させてさらに8.0 GeV まで加速して電子蓄 積リングへ入射する。

陽電子については、まず電子銃から のビームを大電流電子ビーム(10 nC)に切り替え、同様 に1.5 GeV まで加速し、そこで180度偏向させてさらに3.7 GeV まで加速して金属標的に当てて陽電子を生成させる。 これを強いソレノイド磁場で集束し,さらに3.5GeVまで 加速して陽電子蓄積リングへ入射する。この KEKB にお いて、蓄積リングへの入射ビームのエネルギーアクセプ タンスは途中の輸送系の制約より、電子、陽電子とも σε/E = 0.125%の+/-2σε以下と要請されている。これは これまでの TRISTAN AR への入射の場合の約半分と厳し くなっている。特に陽電子ビームについては、電子ビーム に比べてバンチ長が長いためエネルギー幅が大きくなり 問題となる。これは陽電子生成に用いる電子ビームは入 射用電子ビームより約10倍電荷量が大きいため、前段 入射部でのRFバンチングによるバンチの長さがあまり 短くならない事に加えて、金属標的で生成された陽電子 がソレノイド磁場で集束される際に速度差とらせん運動 の軌道長差によりバンチ長が伸びるためである。

そこで陽電子については以下のような対策を取ること にした。(1)まず陽電子のバンチを短くするためにはそ れを生成する電子のバンチを短くすればよい。しかし前 段入射部でのRFバンチングには限界があるので、標的 を照射する直前で電子ビームのバンチの長さを磁気バン チ圧縮系を用いて短くする(Bunch Compression System: BCS)。それに加えて、(2)加速している間はバンチは短 いほうがよいが、リングへの入射に関してはバンチがあ る程度長くてもよい(+/-10mm以下)ことを利用して、ラ イナック終端部でバンチ長を倍に伸ばすかわりにエネル ギー幅が半分になるように縦方向位相空間内の分布を変 形させる(Energy Compression System: ECS)。この論文で は粒子シミュレーションによりビームのエネルギー幅を 評価し、またこれらの対策によりそれがどの程度改善さ れるかについて議論する。

2. ビームのエネルギー幅

ビームのエネルギー幅をきめる一番重要な要素は加速 する前の初期エネルギー拡がりとバンチ長さである。し かし、KEKB 入射ライナックの場合、初期ビームエネル ギー拡がり値(電子:+/-1 MeV、陽電子:+/-3 MeV)は最 終エネルギー(電子: 8000 MeV、陽電子: 3500 MeV) に 比べて小さいのであまり問題にならない。それより、ビー ムが加速マイクロ波の波長(105mm)に対して無視でき ないバンチ長さ(位相にして電子で約5度、陽電子で約20 度)を持つため、バンチの各部分で加速位相が違うことに よるエネルギー拡がりが重要である。またバンチの電荷 量が大きい場合、バンチ内の後方にいる粒子が前にいる 粒子の作る減速方向の電場(縦ウエーク場)の影響を受 け、バンチ内のエネルギー分布が変形する効果も効いて くる。これに加えて、ライナックは 50 Hz の繰り返しで. パルス運転するがパルスごとのRF系の変動により加速 電界や加速位相にジッターを生じるため、加速された ビームのエネルギーもパルスごとに変化する。この変動 は実効的にはエネルギー幅の増大と同じように見える。

これらの影響を考慮し、なるべく現実的なエネルギー 幅の評価を行うために、バンチ内の各粒子が受ける加速 エネルギーをシミュレーションによって計算した。まず 初期の縦方向位相空間の分布(横軸:粒子の進行方向の位 置、縦軸:粒子のエネルギー)は、電子ビームについては 電子銃とRFバンチングセクションの性能で決まるので、 PARMELA コードによるバンチングシミュレーションで 求めたものを用いる[2]。これらの初期分布に対してRF 加速の影響を各粒子の位置に応じた加速位相での加速エ ネルギーをRF電界は正弦波として求め、それを各加速 ユニット分足しあわせた。ちなみに、KEKB ライナックで

は加速ユニットが 57 あり、各ユニットは一つのクライス トロンとそれからRFを供給される 2m 加速管4本よりな り、SLED 空胴を使用して約 160 MeV/unit の加速を行う。 これらのユニットは8つのセクターにグループ分けされ、 一つのセクターに属するクライストロン (4~8台) は同 じサブブースター励振系より基準RF信号の供給を受け る。なおRF系のジッターで重要なものには以下のよう なものがある[3]。まず (1) 各クライストロンのパルス変調 器の電圧変動 (+/-0.15%) からくる RFパワーの変動による 加速電界強度の変動:+/-0.19%、(2)同じ原因からくるクラ イストロンのRF出力の位相変動:+/-0.65 deg、なお(1) と(2)には相関がありそれも考慮している、(3) サブブース ター励振系の基準RF信号の位相変動:+/-0.22 deg、これ はそのセクターに属する全てのクライストロンに同じ変 動を与える、(4) ビーム誘起波を用いて行うビームタイミン グに対する各クライストロンの位相調整の誤差:+/-2.0 deg、(5) 電子銃+RFバンチング部での変動によるビーム タイミングのジッター (+/-1.0 ps)、これは下流の全てのユ ニットに対する位相変動:+/-1.0 deg となる。これらの変 動要因については乱数を用いてその影響を組み込んでシ ミュレーションした。また縦ウエーク場の影響について はその電界分布の形としては Wilson の式 [4] を用いて計 算した。なお、この影響によりバンチの後の方がエネル ギーが低くなるようにエネルギー分布が変形するので、 これを相殺させるように加速位相の頂上から少し(5~10 deg) はずしてバンチの後の方ほど加速量が大きくなるよ うにする。

さて、入射電子ビームについて初期ビームの分布とラ イナック終端での分布を示す(Fig.1、Fig.2)。Fig.2 で分布 の右が縦方向に扇状に広がっているのは、主に位相変動 のためウエーク場の影響と加速位相の肩での傾きの相殺

がずれるためである。エネルギー幅はリングへの入射ア クセプタンスより少し広いがほぼ問題ない程度に収まっ ている。

次に陽電子ビームについては、それを生成するための 大電流電子ビームのバンチ長がまず問題となる。その初 期ビームの分布を Fig.3 に示す。電荷量が大きいのでクー ロン反発力のためRFバンチングしにくく、バンチ長が 長くすそを引いている。これを約3.5 GeV まで加速して 金属標的に当てて陽電子を生成させるが、それをソレノ イド磁場で集束する際に速度差とらせん運動の軌道長差 によりバンチ長が伸びる。これはソレノイド磁場の強さ や加速電界の強さで決まるので、これは別途陽電子集束 の粒子トラッキングシミュレーションを行って求めた[5]。 この陽電子の初期ビーム(Fig.4)について、先程と同様 にRF加速とそのジッターの影響を考慮して求めたライ ナック終端での陽電子ビームの分布を Fig.5 に示す。リン グへの入射アクセプタンスによりずいぶん広いのがわか る。このままではライナックで加速した陽電子のうち4 分の1以下しかリングには入射されないことになるので 対策が必要となる。その対策について次節で述べる。

3. BCS、ECS による陽電子エネルギー幅の改善

このようにこのままでは陽電子ビームのエネルギー幅 は大きすぎるため2つの対策を取る。まずその一つが陽 電子生成のための大電流電子ビームのバンチの長さを圧 縮する BCS (Bunch Compression System) である。これに より縦位相空間内での分布をエネルギー幅を大きくする かわりにバンチ長さが短くなるような変形を生じさせる。 これを行うためにまず180 度偏向部以降の14 台の加速ユ ニットにおいて加速位相の肩(例えば 30 deg)で加速す

バンチの後の方の粒子が前に追い付く

Fig.6 BCS の概念図

ることで、バンチの前よりも後の方がエネルギーが高く なるような勾配を作る。次に Fig. 6 のような偏向電磁石 4 台よりなるシケイン部 (R56=-0.78mm/%)を通過させる とエネルギーの高い粒子ほど近道を通るのでバンチの後 の方にいる粒子が前に追い付き、結果としてバンチ長が 短くなる (Fig.7)。ただし、これにより電子ビームのエネ ルギー幅は大きくなるが、これを金属標的に照射して生

成される陽電子のエネルギー分布はこれにはほとんど依存しない。一方、陽電子のバンチ長さは元の電子のバンチ 長さを反映するので BCS を用いることは効果的である。 こうして得られた陽電子ビームの初期分布を Fig.8 に示す。 これにはソレノイド収束系でのバンチの伸びが含まれて いる。Fig.4 の BCS を用いない場合に比べてバンチが短く なっているのがわかる。

次にライナックの終端において BCS とは逆にバンチを 長くするかわりに陽電子のエネルギー幅が小さくなるよ うな変形を生じさせるのが ECS (Energy Compression System) である。ここではまずシケイン部(R56=-9.2mm/%) を通過させてバンチ内の前後の位置とエネルギーに相関 を持たせる、次に加速部(電界:20MV/m) でこのエネル

今度はこれにより陽電子のバンチ長が伸びるが、リン グへの入射についてバンチ長さについてのアクセプタン スは位相にして全幅で 60 deg と比較的ひろいので問題な い。こうして得られた陽電子ビームのライナック終端で のバンチとエネルギー分布を Fig. 11 に示す。このように、 入射アクセプタンスにほぼ収まる程度にエネルギー幅が 改善された。

4. まとめ

RF系のジッター、縦ウエーク場の影響を含んだシミュ レーションによりビームエネルギー幅の評価を行い、電子 については問題なく、陽電子についても BCS、ECS を用 いて改善することで入射アクセプタンスに収まるようにす ることができることが示された。

5. 参考文献

[1] KEK Report 95-18 「放射光入射器增強計画」

- [2] J-Y. Choi et al., ライナック研究会 '95, p182
- [3] F. Hanaki, KEK Report 95-18, p188
- [4] P. B. Wilson, SLAC-PUB-2884
- T. Kamitani et al., ライナック研究会 '95, p142 [5] T. Kamitani et al., ライナック研究会 '91, p298
- 5] 1. Kalintani et al., 777777前元云 91, p290