Proceedings of the 21st Linear Accelerator Meeting in Japan (September 30-October 2,1996, Tokyo, Japan)

[P30 - 6]

PIC Simulation on Klystron with Multistage Depressed Collector

K. Masuda, K. Yoshikawa, M. Ohnishi, Y. Yamamoto and M. Sobajima

Institute of Advanced Energy, Kyoto University Uji, Kyoto 611, Japan

ABSTRACT

Design of a multistage depressed collector for a 1.2MW L-band CW klystron was accomplished by use of numerical simulations. To obtain information on spent electrons (i.e. input condition for collector design), a klystron simulation code was newly developed.

Design of collector geometry was successfully accomplished to provide high overall efficiencies of around 70%, while making the power loss caused by secondary electron emission quite low. This is very encouraging compared with 60.5% of the conventional klystron without a depressed collector.

エネルギー回収コレクター付きクライストロンの粒子シミュレーション

1. はじめに

近年,核融合プラズマ加熱や放射性廃棄物消滅 処理に代表される大出力 CW クライストロンの工 業利用化に伴い,その高効率化が重要な課題となっ ている.クライストロンの効率を高める最も有効な 手段は使用済み電子ビームエネルギーの回収であ る(Fig.1).クライストロンにおける使用済みビ ームエネルギー回収についてはこれまでに小出力 CW クライストロンでの解析・実験が報告されてい るが¹⁾,大出力の場合には使用済みビームのエネル ギー広がりが広く,高効率エネルギー回収が困難に なる.また,コレクター電極表面での熱負荷の問題 も顕著になるため,より精度の高い解析・設計が必 要となる.

動作周波数 1.25GHz の 1MW 級 CW クライスト ロン (Table 1) について, クライストロン内およ びエネルギー回収電極部での粒子シミュレーショ ンを行った.

FIGURE 1. Schematic diagram of klystron with multistage depressed collector.

TABLE 1. Brief Characteristics of CW klystron.						
Operating Frequency	1250	MHz				
Output Power	> 1.2	MW				
Number of Cavities	6					
Beam Voltage	90.0	kV				
Beam Current	24.3	Α				
Beam Perviance	0.9	$\mu V^{3/2}/A$				

2. 数値解析モデル

2.1. 電子·電磁波相互作用部

エネルギー回収効率は回収電極部へのビーム入 射条件に強く依存するため、高効率エネルギー回収 電極を設計するためには入射電子の位置および速 度分布を精度良く求める必要がある.そこで、クラ イストロン内における電子・高周波相互作用シミュ レーションを行い、回収電極部への入射ビーム条件 を同定した.

シミュレーションは,既存のクライストロン設計用コード(FCIコード²⁾)を参考にして,新たに 複雑な形状の境界により精度良く対応できる有限 要素法を用い,時間発展を追う軸対称二次元・速度 三次元の粒子コード³⁾を作成して行った.

2. 2. エネルギー回収部

エネルギー回収部は,軸対称二次元・速度三次 元の定常問題として取り扱った.

電子・電磁波相互作用部のシミュレーション結 果で得られた電子の位置・速度を入射条件として, エネルギー回収コレクタ設計用粒子コード⁴⁾を用 いてシミュレーションを行った.

3. 解析結果

3.1. 電子·電磁波相互作用解析結果

クライストロンの電子・電磁波相互作用部シミ ュレーション例を Fig.2 に示す. 飽和出力は 1.32MW, 効率 60.5%と計算された. これらの値は 実験値と相対誤差 5%以内と良好に一致しており⁵⁾, 新たに作成したシミュレーションコードの妥当性 が示された.

使用済み電子ビームのエネルギー分布を Fig.3 に 示す. 高周波出力が大きくなるにしたがって,エネ ルギー分布は広くなり,飽和出力時には最大エネル ギーは 170keV に達していることが分かった.

FIGURE 3. Energy distribution of spent electron beam for various drive powers. The dashed line indicates cathode voltage (90kV).

3.2.理論最大回収エネルギーの評価

N 段コレクターで回収される理論最大電力 P。は 次式で与えられる.

$$P_{\rm c} = \sum_{n=1}^{N} V_n \left\{ I(V_{n+1}) - I(V_n) \right\}$$
(1)

ここに、I(V)は使用済みビームのエネルギー分布、 V_n はn番目の電極の電位、 $V_{N+1}=\infty$ である.また、

$$\frac{\partial P_c}{\partial V_n} = 0 \quad (n = 1, 2, \cdots, N - 1) \tag{2}$$

$$V_N = V_{\text{cathode}} \tag{3}$$

を解くことにより、 P_{o} を最大($P_{c,max}$)にする最適 電位が決定される.ただし(3)式の制約条件は、エ ネルギー回収用電源を簡便化するために最終段の 電極電位を電子銃のカソード電位に等しく選ぶこ と(Fig.1 参照)を意味する.また、n段目の回収 電極への熱負荷 P_{hn} は

$$P_{\rm h,n} = \int_{V_n}^{V_{n+1}} (V - V_n) \frac{dI}{dV} dV$$
 (4)

で計算される.

Fig.3 に得られたエネルギー分布について、理論

FIGURE 4. Theoretical limits on energy recovery with multistage depressed collector; (a)maximum collector efficiency and (b)maximum overall efficiency with optimized electrode potentials.

最大回収電力を計算した. Fig.4(a)に理論最大回収 効率を, Fig.4(b)に総合効率を示す. 高周波出力が 大きくなるにつれて,エネルギー広がりが大きくな るため回収効率は低くなるものの,総合効率は高く なることが分かった. また,5 段コレクターを用い れば理論的には 75%を越える総合効率が得られる ことが分かった. 電極への熱負荷は,5 段コレクタ ーの場合には最終段電極で最大 71.9kW となる.

3.3.エネルギー回収コレクター設計

まず,電極電位は18kV刻みの5段で固定として, コレクター形状のみを最適化した(Fig.5).その 結果,回収効率35.8%,総合効率70.5%が得られ, (1)式から計算される理論効率73.9%に近い効率が 得られており,コレクター形状はほぼ理想的に最適 化されていることが分かる.また,各電極の上流側 から放出された二次電子が1段上流側の電極に回 収されると仮定して(Fi.6参照),二次電子放出に よる損失を考慮した場合でも総合効率は69.3%(二 次電子放出係数δ=1)となり,エネルギー回収コレ クターの無い場合の効率 60.5%と比べて飛躍的に 効率が向上することが示された.

次に, さらに効率を向上させる目的で, 同一の 電極形状に(2)式で与えられる最適電位を与え, シ ミュレーションを行ったが, 回収効率・総合効率は むしろ低くなった. エネルギー回収解析の結果を Table 2 にまとめる.

今後,最適電位に対してコレクター形状を最適 化することにより,さらなる効率の向上が期待でき る.

REFERENCES

- 1. E. W. McCune, IEEE IEDM(1987), pp. 157-159
- 2. T. Shintake, KEK 90-3, 1990
- K. Masuda et al., Proc. of the 7th Intnl. Symp. on Advanced Nuclear Energy Res., March, 1996
- 4. Y. Yamamoto et al., Proc. of 12th Symp. on Fusion Engineering, IEEE(1987), pp.1222-1226
- 5. K. Hirano, Private communication.

FIGURE 5. Electron trajectories and equipotential lines in multistage depressed collector

FIGURE 6. Adverse effect of secondary electron emission.

TABLE 2.	Simulation	results on	overall	efficiency

Potentials of Collector Electrodes	Theoretical Limit [%]	Simulation Results [%] $\delta = 0.0$ $\delta = 1.0$	
(a) -18, -36, -54, -72, -90 kV	73.9	70.5	69.3
(b) -10, -20, -30, -60, -90 kV (Optimized Potentials)	77.3	67.4	67.3
Without Depressed Collector	60.5		-