Proceedings of the 20th Linear Accelerator Meeting in Japan (September 6-8, 1995, Osaka, Japan)

Study on the Temporal Structure of the Electron Beam from a linear Accelerator with a Streak Camera.

Ryukou Kato, Yasuhiro Iwase, Yasuyuki Nakajima, Goro Isoyama and Shoji Suemine*

Institute of Scientific and Industrial Research, Osaka University 8-1 Mihogaoka, Ibaraki, Osaka 567, Japan. *Unicon System Co. Ltd.

Abstract

The temporal structure of the electron beam from the ISIR linac has been measured with a streak camera. Several problems deteriorating the time resolution of the measurement system are discussed and basic criteria are given for measuring the length of a very short bunch with the streak camera. The bunch length thus measured is shown as a function of the beam current injected from the electron gun.

ストリークカメラによる線形加速器からの電子ビームの時間構造の研究

1. はじめに

ライナックで加速された電子は、高周波加速の原 理からバンチ構造をしている。通過時間で測った電 子バンチの長さは、一般に L バンドライナックで は数 10ps、S バンドライナックでは数 ps 程度と言 われている。この電子バンチの時間構造は、ライナ ック入射部でのパラメータを反映しており、サブハ ーモニックバンチャー(SHB)の RF 電圧や位相の変 化、ビーム電流を変えたときの空間電荷効果などに より大きく変化し得る。

阪大産研の L バンドライナックの時間構造の測 定は以前にも行われている ¹⁾。我々は、ライナッ クの運転状態と電子ビームの時間構造の関係を調 べる研究を再び始めた。今回の報告では、ストリー クカメラを用いて電子バンチの時間構造の測定を 行う上での基本的な問題点について考察する。

2. 実験方法

阪大産研の L バンドライナックを単バンチモー ドで運転する。電子ビームのエネルギーは 27MeV で、1 バンチに含まれる電子は約 30nC である。直 線部ビームライン上で真空窓(材質:チタン、厚さ: 30 μ m)から大気中に出た電子ビームの放射する Cerenkov 光を測定室まで導いてストリークカメ ラで測定する。 真空窓から約 0.6m のところに平

面鏡を置いているので、この間が Cerenkov 光の発 光領域となる。Cerenkov 光は電子の進行方向に対 し、 $\theta = \cos^{-1}(1/n\beta)$ の角度で放射される。ここで、 β は電子の速度を光速度で割った値であり、nは 空気の屈折率である。今、電子のエネルギーが 27MeV、UV 入力光学系付きストリークカメラの 分光感度特性が 220~850nm であるので、θは 0.935~0.793°となる。最初の平面鏡から1.7mの 位置に焦点距離 2m の凹面鏡をおき、光の主要な部 分を平行光束に近づける。3枚の平面鏡で約 25m 光をガイドした後、焦点距離 0.3m の凸レンズでス トリークカメラのスリット上に集光する。この光は 光電面で電子に変換された後、高速掃引により時間 構造を空間構造に置き換えられる。電子はマイクロ チャンネルプレート (MCP) で増幅され、蛍光面 で再び光となり、SIT カメラで画像情報として取り 込まれる。

ストリークカメラを用いて電子バンチの長さを 測る場合には以下のような点をふまえて測定を行 う必要がある。

3. ストリークカメラでの時間拡がり

1) 電子1個の時間拡がり

光電面から放出される1個の電子の蛍光面上で

の像の大きさであり、時間に換算すると、このシス テムで計測できる最小の時間幅を与える。ノイズと してストリークカメラ内に飛び込んでくる電子の 時間拡がりをMCP電圧の関数として測定した。 (Fig.1) これは掃引速度 0.3ns/15mm のときに、

0.6~1.5ps であった。

Fig.1 電子1個の時間拡がり

2) スリット幅による時間拡がり

測定に必要な光量を得るために時間方向のスリ ット幅を拡げる。これによる時間拡がりを focus モ ードでの像の大きさより評価した。この値はスリッ ト幅 5 μ m の時、4.0ch である。掃引速度 0.3ns/15mm,1ns/15mm での時間に焼き直すと、 各々1.9ps,3.3ps である。

Fig.2 空間電荷効果による Focus 像の拡がり

3) ストリークカメラ内部での空間電荷効果

ストリークカメラは、入射した光を光電面で電子 に変換する。入射光量が多すぎる場合には、電子は 光電面からMCPにたどり着くまでの間に空間電 荷効果により拡がり、実際よりも時間幅は拡がって 観測される。この影響を調べるために入射スリット 直前の集光レンズの位置を変え、スリットに入る光 量を調節してスリット像の大きさを focus モード で測定した。(Fig.2)光量を減らして空間電荷効 果を抑えることによる Focus 像幅の減少はかなり 顕著であった。

Fig.3 MCP電圧による Focus 像の拡がり と peak 値

4) SIT カメラの飽和

使用した SIT カメラとその AD 変換器は1回の 走査当たり(1フレーム当たり)、1 画素 8bit の強度 分解能を持つ。MCP電圧を高くしすぎるとストリ ーク像は飽和し、見かけ上、時間幅は拡がる。そこ で、MCP電圧の関数としてストリーク像の時間幅 を測定した。(Fig.3) このとき、暗電流補正なし の状態でストリーク像を取得したとき、1 画素当た りのカウントが 8bit に達したときのMCP電圧は 570V であった。MCP電圧がこの値以上になると、 SIT カメラは飽和し始め、見かけ上の時間幅は拡が っていく。

5) SIT カメラの積算フレーム数

SIT カメラは1回の走査(1フレーム)では、残 像効果のために、画像データのすべてを取り込むこ とはできない。そのため、積算フレーム数が少ない ときには、時間幅を過小評価することになる。ここ では、Streak 像の時間幅を積算フレーム数の関数 として測定した。(Fig.4)時間幅を過小に評価し ないためには、最低でも積算フレーム数を10以上 に取る必要がある。

Fig.4 Streak 像の積算フレーム数依存性

Fig.5 Cerenkov 光の発光長と Streak 像

4. 光学系での時間拡がり

ー般にある発光点から出た光をレンズ等を用い て他の1点に集光する場合、単一波長では2つの焦 点間ではどのような経路を選択しようとも到達時 間の等時性が保証されている。

しかし、屈折率は波長により異なるので、測定波 長範囲が広い場合には、波長により到達時刻が異な る。そのため、光パルスは時間的に拡がってくる。 この影響は光学系の設計にもよるが、本測定では約 3ps 程度であると考えられる。バンチ長がこの値と 同程度かそれ以下の場合には、バンドパスフィルタ 等により単色化する必要がある。 Cerenkov 光の発光長をある程度の長さにとっ たことにより、異なる発光点間の経路差も含まれて くる。この影響を見積もるために、Cerenkov 光の 発光領域上に遮光板 (アルミホイル)をおいて発光 長を変化させ、Streak 像を測定した。(Fig.5)発 光長が短いほど、真のバンチの長さに近いデータが 得られていると考えられる。

5.入射部パラメータと電子ビームの時間構造

ライナック入射部のパラメータを変えてバンチ の長さを測定した例を示す。ここでは電子銃のグリ ッド電圧を制御して、ピーク電流を変化させた場合 のバンチ長を測定した。(Fig.6)このとき、入射 部の3台のSHBはビーム電流13Aで最適化されて いる。低電流側では電子の空間電荷効果が減少する ために、オーバーバンチングとなり、バンチ長が増 大していると考えられる。

Fig.6 ビーム電流とバンチの Streak 像

6. まとめ

ストリークカメラを用いた電子バンチの時間構 造の測定では、測定値が実際のバンチの長さを正し く反映しているか否かという疑問が常に付きまと う。しかし、先に挙げた項目を判断基準として測 定条件を詰めていくことで、かなり確からしい 測定値を手にすることができるようになった。

¹⁾ T.Hori et al.: Proceedings of the 12th Linear Accelerator Meeting in Japan (1987) p.54.