21-P29

DESIGN OF 100KW PROTON BEAM STOPPER FOR BTA IN JAERI

 M. KAWAI*, K. SAKOGAWA**, M. MIZUMOTO, J. KUSANO
 K. HASEGAWA, H. OGURI, N. ITO and H. MURATA*** Japan Atomic Energy Research Institute
 Tokai-mura, Naka-gun, Ibaraki-ken 319-11, Japan

ABSTRACT

The design study on the proton beam stopper with 100 kW average power of BTA (Basic Technology Accelerator) has been made as a one of the activities of the OMEGA Project. The stopper is composed of copper plates and a sheathing of carbon fiber cmplex material and tungsten alloy W-30Cu. Heat flux input at the beam stopper is assumed 1.68 and 5MW/m². Analysis of temprature distributions and thermal stress is made with the finite element method code ABAQUS. The calculared results verify that the stopper satisfies the design criteria on thermal properties.

原研BTAの100kW陽子ビームストッパーの設計

1. はじめに

原研では、OMEGA計画の一環として大強度陽子加 速器の開発を行っている¹⁻³⁾。その前段部の加速器 である技術開発用加速器 B T A は、ビームエネルギ ー10MeV、平均ビーム電流10mA(ピーク電流100mA、 10ms幅)で運転される。BTAのHEBT系では、100kW の過酷な熱負荷条件に耐えるビームストッパーが必 要である。今回その設計を行った。以下、ストッパ ーの構造と熱・応力解析の結果を示す。

2. ビームストッパーの構造

設計に際して熱的な条件は、入射ビームパルが10 ms、100Hzであることから、平均値の100kWを考慮す れば良い。しかし、これをDTLを出たのと同程度 のビームサイズで受けることは、ほとんど不可能で あり、入熱密度を下げる必要がある。因みに、ビー ムストッパーの設計例⁴⁻⁶⁰を表1 に示す。ビーム ストッパーの基本的な形状は、入射ビームの種類、 エネルギーが同じFMIT原型機を参考に銅製平板 形状とし、ビームを斜めに受けることとした。そし て、入熱密度の条件は、ビームが正規分布している として中心部(冷却チャネルの幅 直径1cm内)で 1.68MW/m²と 5MW/m² の2ケースをとった。この条 件を満たすには、それぞれ

* Toshiba Corporation
** Mitsubishi Heavy Industries, Ltd.

******* Sumitomo Heavy Industries, Ltd.

表1 ビームストッパーの設計例

装置	FMIT原型機	JT60	ITER
目的	と゛ームストッハ゜ー	NBIダンプ	タ・イハ・ータ
ビーム	10MeV p	100kV p	~100kV d
入熱密度	5 MW/m^2	5 MW/m^2	15 MW/m^2
材料	黒鉛被覆銅	0. 2%Ag+Cu	CC材+Cu
形状	平板	鉢 型	平板
冷却チャネル	非円形	円形	-

ビームサイズ:30cmと20cm

ビーム入射角:15度と20度

とすれば良い。

熱吸収の面と機械的強度からは、熱伝導度の優れ た銅をストッパーの基板とする。しかし、銅は 10 MeVの陽子と(p,n)反応により2次中性子を大量に 生成するという問題がある。従って、微量の¹³C が2次中性子を生成するものの、主成分の¹²C が 全く生成しない炭素を銅の表面を被覆することによ って、中性子生成を抑制することができる。しかし、 その場合、最も一般的な材料の黒鉛を採用すると熱 伝導度が低いために炭素の表面温度が非常に高くな る。例えば、FMIT原型機の場合には、厚さ6 m mの黒鉛が用いられたが、その表面温度は1,400℃に もなる。最近、熱伝導度が非常に良好な炭素繊維複 合材料(CC材)が開発され、核融合炉ITERの ダイバータ材として検討されている。これは、繊維 方向の熱伝導度が銅並みに高いことと、繊維垂直方 向の熱膨張率が金属なみに高いという特徴を持って いる。従って、BTAのビームストッパーの被覆材 としてこの炭素CC材を採用することにした。 CC材の難点は、繊維を束ねてできているだけに、 銅板に接合する際の高温での加工時や長期に使用し た場合に亀裂が入ることで、後者の場合、陽子ビー ムが銅板を直接にたたく危険性がある。その主要因 は、CC材と基板の銅の熱膨張率の違いによる熱応 力である。特に、1次元CC材(例えばMFC-1)で は、その可能性がある。その対策も含めて、ビーム ストッパーの構造を下記のように選定した。

a) C C 材の熱応力対策と照射損傷時の交換を容易に するため、タイル方式(50mmx50mm角程度のサイズ) を採用。これによりモジュール化が可能である。

b)CC材の熱応力による亀裂対策として、

・ [MFC1 10mm / W-30Cu 3mm / Cu 3mm] の組み 合わせ

第2層のタングステンの合金 W-30Cuは熱膨張率が MFC-1とほとんど同じで、機械的強度が強いので、 銅の熱応力をこの層と銅の塑性変形で吸収すること ができる。

タイル接合材は、タイル交換の頻度が高いと考え られるビーム中心部でははんだ叉は低温銀鑞(融点 400℃以下)を用い、交換が不要な周辺部には銀鑞 (融点~800℃)を用いる。

冷却系は、図1に示すように銅板中にピッチ1cm の間隔で配列した断面が 0.643 cm²の縦長のチャネ ル24本で構成する。各チャネルはストッパーの外縁

(全体図)

図1 ビームストッパーの概念図

で連結し、全部で4ループとする。給水温度は25℃、 流速は 4 m/s とする。

3. 熱設計

a. 計算法

熱設計の課題は、主要部の温度とCC材の熱応力 である。具体的な目標は下記の通りである。

C C 材表面温度:	1,000℃以下
タイル下面温度:	400℃以下
冷却チャネル壁面温度:	180℃を越えない
	(蒸気圧 10気圧以下;
	サブクール沸騰許容)
冷却水出口温度:	100℃以下
熱応力 F:	CC材に破損を来たさない
	(MFC1では F<0.3kgf/mm ²)

ビームの分布について正規分布を仮定、1次元の 熱伝導の解析式と直管乱流の冷却式を使用し、最も 入熱条件の厳しいビーム中心位置での水温などの温 度分布を評価した上で、ABAQUSコードにより詳細計 算を行った。その計算に必要な縦長の冷却チャンネ ル壁面での熱伝達率

 $h = (\lambda \cdot d_{\bullet}) Nu (\lambda : 水の熱伝導率)$

は、流体での代表的な無次元量ヌセルト数に関する Dittus- Boelterの式(10⁴≤Re≤10⁵、1≤Pr≤10)

$Nu = 0.023 \text{ Re}^{0.8} \text{Pr}^{0.4}$

によって求めた。ここで、d・は等価直径(d.=4S/L =0.679 mm、S:チャネル断面積、L:チャネル周長) であり、Reと Prはそれぞれ無次元量のレイノルズ 数とプラントル数である。これらの無次元量は、 Re = 7.158x10⁴、Pr = 2.331(77℃の値)、Nu = 247となる。その結果得られた熱伝達率は 24.2 kW /(m²・K)となる。また、入熱密度が 1.68 MW/m²と 5 MW/m²の時の水温は、29.1℃と37.3℃である。その 他のABAQUS計算の物性値は文献 5 から採用した。

ABAQUS計算は、先ず1/2セル2次元モデルにより 温度の詳細分布を求めた。その結果に基づいて熱応 力計算を実施したが、隣接するタイルとの境界条件 の設定により結果がかなり影響されるため、3次 元モデルによって熱応力計算を行った。

b. 計算結果

ビームストッパーへの入熱量が、1.68MW/m²と5M W/m²のそれぞれの場合において代表的な位置での温 度について、ABAQUSコードの結果と解析式での結果

(基本モジュール構造)

(1.68MW/m²の時のみ)を比較して図2に示す。入熱 量が1.68MW/m²の時はもちろんのこと、5MW/m²の場 合でも、熱的にもっとも厳しい冷却チャネル表面を 含めて設計条件をみたしていることがわかる。また、 ABAQUS計算結果と解析値を比較すると、両者は、チ ャネル頂点温度に相違があるが、頂点からCC材表 面までの多重層での温度上昇については、81.2℃と 85.5℃とかなり近い。

図3には、3次元モデルによる1.68MW/m²の入熱 における熱変位の計算結果を示す。さらに熱変位と 熱応力について表2に示す。最大熱変位は、面に沿 う方向(横方向)で103µm、縦方向で59.3µmである。 その場合、MFC-1には横方向に最大0.008kg/mm²の引 っ張り応力がかかる。これはMFC-1の限界応力 0.3 kg/mm²を下回っている。また、W-30Cuと銅について ミゼス応力の最大値は、13.8kg/mm²と16.2kg/mm²で ある。ただし、銅については、0.2%塑性変形の耐力 7kg/mm²を越えており、塑性変形は避けられない。

なお、第2層のW-30Cuを銅で置き換えた場合には、 横方向の最大変位量が131µmに増加し、MFC-1での 最大引っ張り力は133g/nm²に増える。この場合のM FC-1の下面の温度は高々308℃である。従って、加 工温度として考えている800℃まで上げた場合は、 360g/nm²の引っ張り力がかかり、MFC-1を破損する 可能性がある。このため、第2層の応力緩衝材があ ることが望ましい。

また、冷却水の出口温度は48.4℃である。圧損は、 コールブルゥクの式による摩擦係数を用いると1.94気圧を 得る。

入熱条	件	1.68MW/mm ²	5. OMW/mm²
熱変位	横方向 縦方向	32.9μm 18.8μm	103.2μm 59.3μm
MFC-1層 ₩-30Cu層 Cu層	引張応力 ミセ [*] ス応力	$-25 \sim 2g/mm^{2}$ 4. 61kg/mm ² 5. 42kg/mm ²	-90~8g/mm ² 13.8kg/mm ² 16.2kg/mm ²

3. まとめ

以上の結果より、本設計によるビームストッパー は熱的に問題の無いことが確認できた。今後の課題 として、CC材の選定や冷却系も含めて設計の詳細 化と最適化、ビームストッパーの製作性の検討が、 さらに設計精度確認やCC材の損傷影響と寿命の検 討が挙げられる。そのため、BTA試験器の2MeVの 陽子ビームでのモックアップ実験を検討している。

参考文献

- M. Mizumoto, et al., ICENES'93, Makuhari, p. 453 (1993).
- M. Mizumoto et al., 第17回本研究会予稿集, p. 121 (1992).
- 3) J. Kusano, et al., 本研究会
- 4) D. Liska, private communication.
- 5) 宮鮔, 日本原子力学会誌, 29巻, p.855 (1993).
- 6) I. Smid, et al., JAERI-M 93-149 (1993).

図3 入熱密度1.68MW/m²の時の熱変位

図2 主要点での温度の比較