21p-1

DEVELOPMENT OF PIE TECHNOLOGY BY X-RAY CT

T. OKAZAKI, H. KOIBUCHI, T. NAGAMINE, Y. NAKAMURA, S. IWANAGA

Power Reactor And Nuclear Fuel Development Corporation 4002 Narita-cho, Oarai-machi, Ibaraki-ken, 311-13, Japan

ABSTRACT

X-Ray CT Test Apparatus is introduced in post-irradiated examination facility in order to inspect the inner state of subassembly. As compared with popular use, there are some characteristic technical subjects — gamma rays emitted from a subassembly, weakness of penetrated X-Ray because of high density fuel pellets and requirements of high tomogram performance, etc.

Then, the 12MeV linear accelerator was selected for the purpose of high tomogram performance.

X線CTによる照射後試験技術の開発

1.緒言

照射燃料集合体試験施設(FMF) 増設施設に導入するX線CT検査装置は、FBR燃料集合体の断 層写真(CT像)を撮影するものである。ラッパ管 内部の燃料ピン配列を観察することは、燃料ピン束 とラッパ管の機械的相互作用(BDI;Bundle Duct Interaction)の解明上、極めて有効である。

X線CT検査装置は医療分野で普及し、一般工業 用としても商業化されているが、これを照射後試験 装置に適用するには、検査対象が照射済の燃料集合 体であることから、以下の技術的課題がある。

①高密度の燃料ペレットが装塡されているためX 線が透過しにくいこと

②試料自身がγ線を放出すること

③画像の高分解能化が要求されること

これらの課題を解決する手段として、高エネルギ ーX線発生装置(電子エネルギー12MeV)の採 用,既存設備を利用した部分試作によるモックアッ プ試験および実証試験による画像性能を確認しなが ら照射後試験技術の開発を進めてきた。

2.開発の目的

FBR燃料集合体は高中性子量照射に伴うBDI の発生が、燃料の高燃焼度化の制限因子の一つに挙 げられている。このBDIは燃料ピンが位置ずれを 起こして再配列をすることで緩和されるため、この ピン再配置挙動を観察して再配列のメカニズムを解 明することが、BDI挙動を予測、評価する技術を 開発する上で重要である。

この観察は、燃料集合体内部に溶融金属を流し込

み燃料ピンを固定させた状態で輪切り切断,研磨す る手法が海外で行われた例があるが、核分裂生成物 (FPガス)が大量に放出される問題があり、国内 で実施することは困難である。従って非破壊で任意 の位置での内部観察が可能なCT検査技術を適用す ることが最良と考えられる。

3.開発の目標と課題

表1に照射後試験用X線CT検査技術の開発目標 と課題を示す。

第一に画像の高分解能化が必要であり、集合体を 構成する最小部材である φ 1 mm程度のラッピングワ イヤが識別可能であること、ラッパ管内面と燃料ピ ンとの接触の有無が判定可能なことである。

第二に、照射済燃料集合体を透過したX線の検出 方法を確立することである。X線CT検査装置は、 被検体を透過したX線を検出し、その透過X線デー タに基づき画像再構成演算により画像化する。ここ では検査対象物が γ 線(γ 線強度:1×10¹⁶Ph /sec — 燃焼度約10万MWd/T,冷却日数 400 日の燃料集合体の場合)を放出し、それ自体が ノイズとなるのでその影響を最小限に抑える必要が ある。また、FBR燃料集合体はX線を透過しにく い高密度の燃料ペレット(U,Pu酸化物の焼結体)が装塡されており鉄換算の透過厚さは約20 cmに 相当するため、X線の透過能力を向上させることが 必要である。

第三に、照射後試験のための装置として成立させ る必要がある。目標画像性能を達成するために走査 の駆動性能を確保しつつ、装置の小型化を図るとと もに、試験セル内に設置する装置については、遠隔 保守性を考慮しなければならない。

表1. 照射後試験用X線CT検査技術の 開発目標と課題

開発目標	14 M	具体的内容
画像の高分解能化	微細コリメータの実現 検出器の高密度配列	・ラッピングワイヤ(φ 1 ㎜)の識別 ・ラッパ管と燃料ピンの接触の有無の判定
透過X線の検出方法	7 ノイズの低減化.	・7線強度:1×10 ¹¹ Ph/sec
の確立	X線透過率の向上	・高密度 :鉄換算厚さ 20cm
照射後試験装置としての	施設との整合性	・設置スペース:8 [™] × 6 [□] × 5 ^H ■
成立性の確保	違隔保守性	・遠隔操作による分解組立

4.課題への対応

(1)画像の高分解能化

CT画像は燃料集合体のあらゆる方向からの透過 データを基に画像再構成演算によって映像化するの で、より微細なピッチで透過データを収集すること が要求される。

直径1mmのラッピングワイヤを画像に表すには、 画素数としては3個以上必要であり、1mmの1/3 以下である0.3 mmのスリット幅を有するコリメータ により透過データを収集する必要がある。従来この ような微細スリットをタングステン合金に設けた例 はなく、mmオーダーが限界であった。このため、コ リメータの構造を提案,試作し、幅0.3 mm,高さ2 mmのコリメータを製作できる見通しを得た。

また撮影系は、X線線源と検出器の配置および走 査方向数から、検出器ピッチを高密度配列させるこ とが要求される。それに伴い、高エネルギーX線線 源特有のクロストークが懸念されるが、試作検出器 による3MeVのX線透過データ収集の結果、その 影響を認めることができず、検出器の製作設計の妥 当性を確認している。

(2)透過X線検出方法の確立

本課題に対しては、

①高エネルギーX線線源の採用

②高出力型X線線源の採用

③パルス状X線と同期したX線検出システム により、入射γ線に比較して透過X線の強度を高め ることにより達成する。

X線線源としては、最大電子エネルギー12Me V, X線出力は1750cGy /min at 1m のライナック 加速器を用いる。 また、X線検出システムの機能 性能を確認する ため、試作検出器による「常陽」照射済燃料集合体 のγ線ノイズ測定を実施した。その結果、十分なS N比を確保できる見通しが得られると共に、散乱線 の遮蔽が重要であることが判明し、実機の製作設計 に反映させている。

以上により、燃料集合体が保有するγ線ノイズ, 透過しにくさを解決する。

(3)照射後試験装置としての成立性

走査のための必要動作としては並進,回転,昇降 がある。当初、燃料集合体に回転動作をさせること により、スキャナ装置およびその占有スペースの小 型化を狙ったが、本方式では回転位置決め精度に問 題があり設計方針を変更した。すなわち、X線線源 と検出器を搭載した高剛性のスキャナ装置に上記3 動作を集中させ、駆動性能を確保することにした。

装置の遠隔保守性については、試験セル内に設置 する試料駆動装置が対象となるが、その機能を

・ 集合体を区分昇降させ、 冷却ガス通路を確保

・試験セルの窒素雰囲気とCT検査室の空気雰囲 気を仕切る気密性能を有すること

のみとして構造の単純化,ユニット化を図り、マス タースレーブマニプレータ,クレーン使用での遠隔 保守性の確認を行っている。

5.実証試験

4項に述べた課題への対応の内、コリメータスリ ット幅寸法,高エネルギー・高出力型X線線源の採 用の妥当性を確認するために、以下のような実証試 験を実施した。

(1)12MeV加速器での確認

まず第一に、高エネルギーX線線源を使用したC T装置の実現性を確認するために、既存の試験装置 により鉛ペレット製のFBR模擬燃料集合体を撮影 した。図1(a)に結果を示すが、コリメータスリッ ト幅2mm,走査の並進ピッチ1mmを適切に設定する ことにより、画像性能が向上する見通しを得た。

次に、同一装置で、スリット幅0.3mmのコリメ ータと中心空孔を想定した人工欠陥付のペレットの 組合せで撮像した結果を(b)に示す。微細スリット によりø0.3mmの欠陥識別が可能となった。 (2)3MeV加速器での確認

(b) ではペレットの欠陥識別を重点に観察したが

- 64 -

次に 3 M e V加速器を用いラッピングワイヤの確認 を行った。模擬燃料ペレット数を削減し、X線透過 能力を 1 2 M e V加速器にほぼ等価にしている。 (c)から判るようにスリット幅は実機採用予定幅よ り大きい 0.4 mmであるが、ラッピングワイヤ(ϕ 1.32 mm)が確認できている。

以上により、被検体からの γ 線ノイズの影響を除 き本装置の基本的な性能は確認された。なお、 γ ノ イズ対策の評価については、実際の照射済燃料集合 体によっておこなう。

6.装置の概要

図2にX線CT検査装置の概念を示す。 加速器、検出器を搭載したスキャナ装置本体は、 施設の地下2階のCT検査室に設置する。その大き さは、幅3.8m,奥行5.7m,高さ4.8m、 重量約60^トッである。一方、被検体である燃料集合 体は、試料駆動装置によって1階の第2試験セルか らスキャナ装置に下降する。

試験は、燃料集合体を中心にスキャナ装置が並進 回転し、透過X線を検出する。なお、並進動作開始 から画像表示までは、約30分の予定である。

また、本装置の性能仕様としては、寸法測定精度 $\leq \pm 0.6 mm$,欠陥識別性能 $\leq 0.3 mm$,密度識別 性能 $\leq 4\%$ である。

図2. X線CT検査装置の概念図

7.今後の対応について

本装置は、平成7年度に総合調整試運転を開始し 8年度に使用開始の予定で進めている。

なお高エネルギー加速器固有の課題として、X線 発生に係わる中性子線を含めた遮蔽性能や、放射化 する部材の放射能量について評価中である。この評 価結果を基に、必要な対策または装置の運転・保守 計画を立案する予定である。

また将来的には、CT画像の3次元表示機能の付加や燃料ピン自体のより詳細な画像(例えば、欠陥 識別性能≤0.1mm)が要求される方向にあり、対応してゆく必要がある。

〔謝辞〕12MeV,3MeV加速器を使用した実証 試験および実機の設計製作においては、(㈱日 立製作所の協力を得ている。

〔参考文献〕

(1) 永峯,他 1993 年(第31回)春の年会要旨集
L23 「照射後試験用X線CT検査装置の開発」