20-P31

BEAM SIMULATION CODE FOR A HIGH-INTENSITY PROTON DRIFT TUBE LINAC

Takao Kato

KEK, National Laboratory for High Energy Physics Oho 1-1, Tsukuba-shi, Ibaraki-ken, 305, Japan

ABSTRACT

A beam simulation code, LINSAC (Linac Simulation Code with an Accurate Field Distribution), was recently developed in order to simulate a high-intensity beam in a drift tube linac (DTL). A stepby-step calculation within a unit cell is performed on the basis of the exact longitudinal and transverse electric field distributions in a drift tube gap. The code takes into account the particle-to-particle (P-P) electric forces among all particles for a space-charge calculation. An outline of the code is given. Some calculated results concerning both the beam behavior in a drift-tube unit cell and an indication of beam halo formation are also described.

1. はじめに

広く使われているコードのPARMILAでは、加 速ギャップについて平均した電場が使用される。こ のコードがリニアックの構造パラメーターを正確に 計算する事はよく知られている。ところが、大強度 のビームシミュレーションを行なう時には、二つの 問題点がある。第一は、空間電荷効果の計算法であ る。第二は、平均電場を使用している事に由来す る。いずれも、平均的な力を使っている為に、粒子 が加速セルの中で示す微妙な動きを無視する結果と なり、特に、大強度の場合には結果の信頼性に欠け る。そこで、加速ギャップの電場を厳密に使用する 計算コード LINSAC (Linac Simulation Code with an Accurate Field Distribution) を開発した。LINSAC で は、1 セルの中を細かく(時間的及び空間的に)分 割して計算を行なっており、必要となる電磁場の分 布は予めSUPERFISHにより計算しておく。空間電荷

効果は、使用する全粒子についてのクーロン力を計 算ステップごとに算出して取り込んでいる。このよ うな計算法は、以前の方法に比べると膨大な計算量 となるので、ベクトル型のスーパーコンピューター を使用する。ベクトル化率99.7%以上が達成され、普 通型の計算機の30倍以上の計算速度が得られている (HITACで比べた場合)。

2. 計算法

電磁場中の粒子の運動は次式で記述される。

$$\frac{d\mathbf{p}}{dt} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B})$$
(1)
$$\mathbf{p} = m_0 \gamma \mathbf{v}$$

使用記号は一般的であり、速度 v は v²=v²+v²+v² である。SUPERFISHにより計算された加速電場の分 布は、まず 9 次の多項式で近似する。多くのエネル ギーに対応する多項式の係数を LINSAC に読み込ま せ、その後、必要な平均加速電場が得られるように 規格化を行なう。次に、加速軸上以外の電磁場を求 める為に、ユニットセルを単位として、加速電場を Fourier 展開する。以下の関係式を使う。

$$E_{z} = \sum_{m=0}^{\infty} A_{m} I_{0}(k_{m}r) \cos \frac{2m\pi z}{L} \cos \omega t$$
$$E_{r} = \sum_{m=1}^{\infty} \frac{A_{m}2m\pi}{k_{m}L} I_{1}(k_{m}r) \sin \frac{2m\pi z}{L} \cos \omega t$$
$$k_{m}^{2} = \left(\frac{2\pi}{\lambda}\right)^{2} \left(\left(\frac{m\lambda}{L}\right)^{2} - 1\right)$$

ここでI_oとI_iは変形ベッセル関数、Lはユニットセル 長さ、ωは角周波数、tは時間、λは自由空間波長を 表す。第1式から係数を求め、第5項まで用いて Er を計算する。このようにして求めた結果を図1に示 す。計算に必要となる他のパラメーターはPARMILA によるデザインの結果を使用した。セル長さ、収束 磁石のパラメーター、ドリフトチューブの長さ、安 定粒子のエネルギーと位相、そして周波数などであ る。従って、PARMILAとLINSACの計算結果は直接 比較が可能となる。

(1) 式は、4次の Runge-Kutta 法により数値 計算する。この時、i-番目の粒子に働く空間電荷力 は、他の全ての粒子によるクーロン力の和として次 式により計算する。

$$\mathbf{E}_{i} = \frac{q}{4\pi\varepsilon_{0}} \sum_{i \neq i} \frac{1}{\mathbf{r}_{ii}^{2}}$$

ε₀は自由空間誘電率、r_{ij}はiとj粒子の距離を表す。 計算のベクトル化率を高める為に、全てのユニット セル長さは予め細かく分割して、その各ステップの 電磁場の値は計算が始まる前に指定する。

3. ユニットセル内の運動

ー様に分布した 1600 個の粒子集団(入射エネ ルギー3 MeV)を、432 MHz JHP DTL(平均加速電 場 3 MV/m)へ入射させ、第11セル内(平均エネル ギー4.26 MeV、セル長さ6.64 cm、四極磁石中心から 次の四極磁石中心まで)の運動を解析する。入射粒 子のエミッタンスと位相の拡がりは、RFQの出力ビー ムと同じとする。

図2 あるユニットセルを通過した時の横方向の運動エネルギーの変化を、そのセルの平均横座標に対して図示。磁場勾配がゼロの場合。

図3 あるユニットセルを通過した時の横方向の運動エネルギーの変化を、そのセルの平均横座標に対して図示。磁場勾配がオンの場合。

1) 横方向(空間電荷効果を含まない場合)

四極磁石がゼロの場合に、横方向の運動エネル ギーが、このセルの通過によりどのように変化する かを、横方向の入射位置の関数として図2に示す。 これは、高周波発散力の効果を表している。

次に四極磁石の値をおよそ175T/m 程度に設定 する。この時の横方向の運動エネルギーの変化を図 3に示す。これにより横方向の運動エネルギーは 1 keV程度変化する。この結果は、セル通過による横方 向運動エネルギーの変化は、高周波発散力と四極磁 石に依存している事を表している。

2) 衝突 (ビーム内衝突)

高周波の1周期を細かく分割し、且つ空間電荷 効果を全粒子に対しての和により計算するので、 LINSACの計算は粒子のバンチ内衝突の効果を含んで いる。図4-aに1600粒子を加速した時のあるユニッ トセルにおける2個の粒子の軌跡を示す。図4-bは、 ユニットセルを通過した時に受ける変位xと勾配x' の変化量の、空間電荷効果がある場合と無い場合と の差を図示したものである。両端の丸印が図4-aの衝 突粒子に対応する。図5-aは、同じく1600粒子を2 セルにわたって加速した時に、ある2個の粒子の縦 方向の運動エネルギーの変化を示す。2個の加速 ギャップで加速された後で、エネルギーが上下に

図4(a) 第11 セル内の2個の衝突粒子の軌跡(x vs.z)。(b)空間電荷効果の有無による(50 mAと 0 mA)第11 セル内の変位 x の差[(x_{out}-x_{in})_{50mA}-(x_{out}x_{in})_{omA}]を x'の同様の差に対して図示。丸印は左図の 2個の粒子を表す。

図5 (a) 第1と2セルを通過した時の2個の粒子の 縦方向の運動エネルギーの変化。位置 107 mm 付近 で衝突によるエネルギー変化が見られる。(b) 左図 を拡大した図。

図6出力 y-y'エミッタンス(5000粒子、100mA)。 左右の丸印は、ビーム損失となる粒子。

シフトしている。そこを拡大したのが図5-bである。 ここでは、衝突が主として縦方向に起こり、縦方向 の振動エネルギーと比べてもそんなに小さくないエ ネルギー変化が起きている。低エネルギーの陽子リ ニアックでは、エネルギー因子 γ が小さいので、電 子蓄積リングにおいて見られるような大きな縦方向 のエネルギー変化は見られない。しかし、こうした 衝突がビームの性質を悪くする事は予想出来る。

4. ビームハローの生成

5000粒子を用いて100mAビームの振る舞いを 計算する(45 セル、10 MeV まで)。図6には、出 力ビームのy-y'エミッタンスを示す。図6の丸印(粒 子番号2801=A、粒子番号3729=B)は、もしビーム損 失を条件にしてシミュレーションが行なわれていれ ば,どこかで壁に衝突する粒子である。図7に粒子A,B が全ての計算ステップの過程で受けるクーロン力を

図7 計算の全ステップにおいて、粒子番号 2801 と3729 番が受けるクーロン力。

図8 計算途中の第2924ステップにおける 全粒子 (5000個)のx方向のクーロン力。1ステップは高 周波位相に換算して約2°。本図は、平均的な、セ ルの中のクーロン力を表すと考えられる。

示した(縦軸は任意スケール)。確かに粒子AとBは ステップ番号4858付近において、大きな衝突を経験 している。計算のあるーステップにおいて、全ての 粒子が受けるクーロン力の分布は図8に示すごとく なので、これから、AとBの衝突はエネルギーが大き く、且つ頻度が少ない事がわかる。このような衝突 の計算が、どこまで正しいかは今後の検討にまつ。 図6の三角印(これらは小さな衝突を経験してい る)を含めて、このシミュレーション全体でビーム 損失となる粒子は、2~3個と予想されるが、これ は、ビームハローの割合としては、充分な個数であ り、ハロー生成の一原因と考えられる。

謝辞

多くの議論を通じて有益な助言をいただいた 山崎主幹に感謝致します。