Proceedings of the 18th Linear Accelerator Meeting in Japan, Tsukuba, 21-23 July 1993

FIRST PHASE PLAN FOR EXPERIMENTAL STUDY OF HEAVY-ION INERTIAL FUSIUON ACCELERATOR

Toshiyuki HATTORI, Masahiro OKAMURA, Yoshiyuk OGURI, Toshihiro AIDA, Kouichi TAKEUCHI, Kimikazu Sasa, Takashi ITOH and Masashi OKADA Research Labolatory for Nuclear Reactors, Tokyo Institute of Technology, 2-12-1 Oh-okayama, Meguro-Ku, Tokyo, 152 Japan Yousuke TAKAHASHI and Yasuyuki ISHII Japan Atomic Energy Research Institute 1233, Watanuki, Takasaki, Gunma, 370-12, Japan

ABSTRACT

We propse the basic experiment plan of driver for heavy-ion inertial fusion by heavy-ion linac[1-3] system and the heavy-ion cooler synchrotron. As the first phase of planning, we will improve old heavy-ion accelerator system that accelerate small intensity around Cl ion with charge to mass ratio of 1/4 up to 2. 4 MeV/amu. The injector of the system will exchange from the 1.6 MV Peletron Tandem accelerator to an RFQ type linac with an ECR heavy-ion source. According to building up the power sources of RF and focusing magnet, then it is able to accelerate intense around Xe ion with charge to mass ratio of 1/6 up to 2.4 MeV/ amu. At the next stage of it, we will construct a heavy-ion cooler synchrotron having magneticrigidity of 3 or 6 Tm and begin to study about HIF driver.

重イオン慣性核融合用ドライバー研究第1期計画

1. はじめに

重イオン慣性核融合用ドライバーにに関 連する1980年から現代なでの新加速器 技術の進歩は目ざましく、それほど高くな いエネルギーに加速された重イオンでも、 シンクロトロンに数1000ターン蓄積可 能な電子冷却とRF蓄積を組合せた蓄積技 術が研究され、1990年代に入ってかな りの成功を収めている。 このことからE CR型イオン源からのそれほどビーム強度 の高くない高電離重イオンを中型の重イオ ン線形加速器で加速し大量にシンクロトロン の空間電荷効果による不安定の条件近くま で蓄積することが可能である。

そしてペレットのブレークイーブン研究 程度の基礎的実験研究に必要なビームは重 イオン慣性核融合発電プラトンの様な巨大 な線形加速器でなくても中型の重イオン線 形加速器からの重イオンを中型の重イオン クーラーシンクロトロンに蓄積後加速する ことで得られるはずである。 そこで原子炉工学研究所の高強度重イオ ンRFQ線形加速器[1-3] と中型の重イオ ンクーラーシンクロトロンを組み合わせる ことで、十分重イオン慣性核融合の基礎的 研究を展開することが可能で有る。 さら に重イオン線形加速器の増強及び蓄積リン グ、バンチ圧縮リンングとの組合せにより、 慣性核融合用ペレットのブレークイーブン に必要なエネルギー(100kJ)を投入 することも可能になる。[4,5]

原子力を指向する研究所が重イオン慣性 核融合研究専用の実験装置を持ち、研究に 専念できるようになれば非常にかっきてき なことに成ろう。

しかしながらそう簡単に話が進まないの が文部省傘下の大学付置研究所の特徴であ る。しかし核融合研究において、研究の 整合性の有る発展の観点から見て重イオン 慣性核融合の実験的基礎研究は極めて重要 で有る。 早急に大学、付置研究所、研究 所が率先して研究を開始する必要が有る。 これは現代の先進工業国日本の世界人類に 対する義務であると言えよう。

2. 研究第1期計画概要

そこで重イオン慣性核融合ドライバーの 実験的研究として、東工大原子炉工学研究 所の原子科学研究室にある重イオン加速器 システムを利用して出来る研究を開始する。 重イオン加速器システムのIH型線形加速 器の高電流化のためにRFQ型線形加速器 を増設し、より重い重イオンを加速出来る 様にECR型多価重イオン源を入射できる 入射系を製作する。 IH型線形加速器の 高電流化と遙かに重いXe程度の重イ オンを加速可能に改造し、装置の有効利用 を行う。 重イオン慣性核融合ドライバー 初段の実験的研究を行う。

さらに重イオン蓄積リングを建設し、電 子ビームクーリング技術と組み合わせるこ とで慣性核融合用重イオン蓄積リングへの 重イオン、クラスターイオンの大強度入射、 蓄積に関するビームシミュレーション実験 が可能となる。 さらにターゲット実験の ためのビーム圧縮実験も可能となる。 第1期計画の研究装置の平面図を図1に示 す。

IH型重イオン線形加速器システムの 改造

東工大重イオン線形加速器システム[6] は1.6MVタンデムペレトロンを入射器 とする塩素程度までの、電荷と質量の比q /A=1/4以上の小電流イオンをIH型 線形加速器で核子当り2.4MeVまで加 速する性能を持っている。 このIH型線 形加速器の加速電圧の放電に対する余裕、 収束用4重極電磁石の余裕が有ることから、 高周波電源の増強、4重極電磁石電源の増 強及び冷却系の増強を行う。 又高周波電 源に関してはデュテーファクター10%程 度のパルス電源に改造する予定である。

これらの可能性及びイオン源の性能も考 えて、100kJ重イオン慣性核融合基礎 実験装置計画と同じq/A=1/6以上の イオンを加速可能な高電流重イオン加速器 システムに改造する計画せある。

表1に現在と改造後のIH型線形加速器 の主要パラメータを示す。

	RFQ Linac	IH Linac	Old IH Linac
Charge-to-mass ratio	$\geq 1/6$	$\geq 1/6$	$\geq 1/4$
Energy Input (MeV/amu)	0.005	0.24	0.24
Output(MeV/amu)	0.24	2.4	2.4
Cavity Inner D. (cm)	120	140	140
L. (m)	2.5	7.0	7.0
Operation Frequency(MHz)	48	48	48
Synchronous Phase	$-90^{\circ} \sim -30^{\circ}$	-30°	-30°
Shunt Impedance (MΩ/m)	23	182	182
Acceleration Voltage(MV)	1.4	13.0	8.6
RF Power (wall loss)(kW)	35	180	80

Table-1 Parameters of Linacs for Heavy-Ion Driver Experiment at 1st Phase

4. 多価 E C R イオン 源と R F Q 型線形加 速器の増設

現東工大重イオン加速器システムは入射 器が1.6MVタンデムペレトロンである。 そのため加速器システム全体としては塩 素程度のイオンまでを小電流で加速する性 能しか持たない。 より重イオン化、より 高電流化が必要である。

そこで、1980年代に進歩し一般化した多価用重イオンECR型イオン源[7,8] で高電流多価イオンを発生させ、それを4 ベーンタイプのRFQ型線形加速器を新設 して加速し入射器とすることにした。 イオン源中でECR型イオン源は多価重 イオンを高電流で発生する性能を持ってお り、日本でも幾つかの研究所で研究が行わ れている。 特に東大核研、東工大、放医 研、日本製鋼所による核研グループの14 GHzECRイオン源の性能は世界のトッ プに有ると言えよう。 核研グループのE CRイオン源とほぼ同じ性能を持つCEN G研究所のECRイオン源CAPRICE の各元素に対する多価重イオンの生成量を 検討すると、q/A=1/6程度のXeイ オンの生成電流量は0.1mAから1mA である。 基礎研究が可能な電流量で有る。

そこで東工大重イオン線形加速器システ ムの1.6MVタンデムペレトロンの代わ りにRFQ型線形加速器を建設してIH型 線形加速器の入射器にする。 RFQ型の 加速空洞の共振周波数は主加速器であるI H型線形加速器の共振周波数の48MHz に統一するのが良いが、これから検討する 必要がある。 現在東工大原子炉研で建設 している高強度RFQ型重イオン線形加速 器の共振周波数は80MHzで加速空洞径 は72.5cmである。 そのことから4 8 MHz RF Q型空洞の直径は120 cm となり長さは2.5mとなる。 電力効率 を考慮すると空洞は4ベイン型が良いが、 大型化したことによるベインの設定精度等 どのような問題が起こるか検討する必要が あろう。

表1にRFQ型線形加速器の主要パラメ ータを示す。 加速高周波源は主加速器の IH型線形加速器と同じデュテーファクタ ー10%にする。

5. 重イオンクーラーシンクロトロン

重イオン慣性核融合ドライバーの低エネ ルギー部の実験的研究は東工大重イオン加 速器システムを改造することで可能として も、蓄積リングへの入射、蓄積等のビーム ハンドリングの研究を行うことは不可能で ある。 そこで重イオン蓄積リングを建設 して、電子ビームクーリング技術と組み合 わせることで慣性核融合用重イオン蓄積リ ングへの重イオン、クラスターイオン等の 大強度入射、蓄積に関するビームシミュレ ーション実験を行うことを計画している。 さらにターゲット実験のためのビーム圧縮 実験も可能となる。

東工大原子炉研・原子科学研究室の小改築で収納可能な大きさの重イオンクーラー シンクロトロンを2種類を検討した。マ グネチク・リジリティーが6.1T・mと 3.5T・mの場合のパラメータを表2に示す。

	Example(1)	Exampl(2)	
Maximum Magnetic Rigidity (T・m)	6.1	3.5	
Max. Beam Energy Ion(q/A=1/2)	370	140	
Ion(q/A=1/6)(MeV/amu) 49	16.6	
Injection Energy (MeV/amu) 2.4	2.4	
Circumference (m)	41.2	31.4	
Revolution Freq. $(q/A=1/6)$ (MHz)	0.52 - 2.27	0.68 - 1.8	
Average Radius (m)	6.6	5.0	
Radius of Curvature (m)	4.05	2.2	
Length of Long Straight Section (m)	6.1	7.0	
Rising Time of Magnet Excitation(sec)	3.5	3.5	
Max. Field of Dipole Magnets (kG)	15.0	16.0	
Vacuum Pressure (Torr)	10 ⁻¹¹	10 ⁻¹¹	

Table-2 Main Parameters of Cooler Synchrotron Ring

REFERENCES

- M. Okamura, T. Hattori, Y. Oguri, T. Aida, K. Takeuchi, O. Takeda, K. Sato, Y. Tanabe, N. Tokuda and S. Yamada.; Proc. of 8th Sym. Acc. Sci. and Tech., 8(1991)131-132
- O. Takeda, K. Satoh, Y. Tanabe, S. Kawazu, M. Yamaguchi, M. Okamura, T. Hattori and Y. Oguri; Proc. 3rd European Particle Accelerator Conference, Berlin, Germany, March 24-28, 1992 p1334-1336
- M. Okamura, Y. Oguri, Y. Takahashi, T. Hattori, O. Takeda, K. Satoh and Y. Tanabe Proc. 1992 Linear Accelerator Conference, August 24-28, Ottawa, 1992 p65-67
- T. Hattori, M. Okamura, T. Aida, Y. Oguri, K. Takeuchi, Y. Takahashi, H. Muto, Y. Ishii and T. Hirata.; Proc. of 8th symp. Acce. Sci. and Tech., 8(1991)419-421

- T. Hattori, M. Okamura, Y. Oguri, T. Aida, K. Takeuchi, K. Sasa, Y. Takahashi and Y. Ishii ; Proc. of Intern. Symp. on Heavy Ion Inertial Fusion, Frascati, Italy, 25-28 May, 1993, (1993)p40
- T. Hattori, K. Sato, H. Suzuki,
 Y. Oguri and E. Arai.; Proc. 1986 Intn. Conf. of Linear Accelerator, Stanford, 1986 p377-379.
- R. Geller, F. Bourg, P. Briand, J. Debernardi, M. Delaunay, B. Jacquot, P. Ludwing, R. Pauthenet, M. Pontonnier and P. Sortais; Proc. Int. Conf. on ECR Ion Sources and their applications, NSCL Report #MSUCP-47 (1987)1-32.
- T. Hattori, T. Hirata, H. Suzuki, S. Yamada, M. Sekiguchi, Y. Ohosiro, E. Tojyo, M. Oyaizu, Y. Shirakabe and K. Sawada; Proc. of 7th Symposium Accelerator Science and Technology, 7(1989)71-73.

図1 重イオン慣性核融合用ドライバー研究第1期計画のレイアウト