BEAM MONITOR SYSTEMS FOR THE KEK 40MEV PROTON LINAC

A.Akiyama, Z.Igarashi, A.Ueno, T.Kawakubo, E.Kadokura, T.Kubota, Y.Mori, H.Nakagawa, K.Nanmo, H,Someya, Y.Sato, E.Takasaki, T.Takenaka and M.Yoshii

KEK, National Laboratory for High Energy Physics 1-1 Oho, Tukuba-shi, Ibaraki-ken, 305

ABSTRACT

The monitor systems (current transformer, profile monitor, bunch monitor, velocity monitor, emittance monitor, and momentum analyzer) used for the KEK 40MeV proton linac are descrived.

1.はじめに

KEK陽子リニアックは建設以来、約20年経過 しており、その間に20MeVより40MeVへの エネルギー増強、陽子からH-への変更、偏極H-や D-の加速等も行い現在に至っている。これらに伴っ てモニター系も改造を加えられたり、新しい型のも のが設置されたりしている。

本稿では現在KEK陽子リニアックで使用されて いるモニター系について述べる。図ー1にKEK4 0MeV陽子リニアック全体図とモニター配置図を 示す。

2.カレントトランスフォーマー (CT) 陽子を加速していた頃はフェライト製コアーを用 いたフィードバック型のものを使用していたがパル ス幅の長い(~80 μ s)H-ビームやビーム電流の 低い(~10 μ A)偏極H-ビームを加速するように なってからは、パーマロイ製コアー(内径=118、 外形=150、高さ=49)に200ターンのコイ ルを巻いたノンフィードバック型のものを使用して 現在に至っている。このCTの応答時間は~1 μ s、 100 μ sパルス入力に対するサグは~2%であ る。図-2に4台のCTの出力波型を示す。これは デジタルオシロに取り込まれ、VMEを通してコン ソール上のCRTに表示されたものであり、波型と ともにビームの透過効率も表示している。

Layout of the KEK 40MeV Proton Linac

図ー1 KEK40MeV陽子リニアック全体図とモニター配置図

3.プロファイルモニター

マルチワイヤー方式のプロファイルでモニター ヘッドは水平、垂直方向ともに30µm∮の金メッ キタングステン線、32本を2.5mmピッチでセラ ミック板に張っている。陽子ビームの時は2次電子 放出により、ワイヤーの出力信号+であった。従っ てセラミック板の前後のバイアス電極には2次電子 を吸収するため+300Vの電圧をかけていた。一 方、H-ビームではワイヤーを通過する時、2次電 子とともにビーム自身の電子もはぎ取られる。この 2つの電子はワイヤーに相反する極性の信号を誘起 しプロファイル信号はS/Nの悪いものであった。 そこでビーム自身の電子のみを利用し、2次電子を 抑さえるため、バイアス電極に-300V、ワイ ヤー自身に+300Vの電圧を印加した。加速器の 立ち上げでは、図-3を見ながらリニアックやビー ムライン、ブースター入射の調整を行っている。

4.バンチモニターリ

同軸型のファラデーカップが20MeVラインお よび40MeVに1台づつ、アモルファスコアーを 用いた1ターントロイドが20MeVラインに2 台、40MeVに3台、静電型ピックアップが40 MeVラインに3台が夫々設置されている。図ー4 に1ターントロイドの出力波型を示す。D-は β が 小さいためバンチが広がって見えている。

図-4 バンチ波型 (左:H-ビーム 右:D-ビーム)

図-3 左は水平、右は垂直方向のプロファイル、上が上流側、計8台、表示されている。

-124 -

93JUL19084057.EMH

図-5 横方向エミッタンス測定例

5.エミッタンスモニター2)

従来はスリットとワイヤーを使ったものであった が、スリットその他からの2次電子の影響で測定に 誤差を生じていた。そこでワイヤーの代わりにス リット付きのグラファイト製ファラデーカップに置 き換えた。図-5に横方向の測定結果を示す。エ ミッタンス測定は立ち上げ時と毎週月曜日の午前に 行っている。

6.速度モニター ()

TOF法によりビームの飛行時間を測定し、速 度、エネルギー、運動量を知る装置である。ビーム ライン上の2ケ所に設置された前記のバンチモニ ターの一つである1ターントロイドの出力からバン ドパスフィルターにより基本波(201MHz)成 分を取り出し、その位相差から時間差を求めてい る。図ー6はCRTに表示された一例である。これ からパルス内でのエネルギー変動が分かる。また図 中のエネルギー値はマーカー点でのものである。 この波型が立ち上げ時には以前と同一と成る様に、 また運転時には変化が無いか常に観測している。

図-6 速度モニター(H-ビーム加速時)
上:20MeV、340keV/div
下:40MeV、650keV/div

7.アナライザー(3

リニアック建設当初はオシロ上に表示するのみで あったが、現在はパソコンによる解析や表示を行っ ている。図-7参照。

図ー7 アナライザー

8.インテンシティレコード

図-8は加速器各部におけるビーム強度および2 0MeV、40MeVの速度モニターの出力を10 分おきに計算機により、プロットしたもので運転開 始より終了までの長時間の変動を観測するものであ る。KEK-PSの様なカスケードマシンではイオ ン源やリニアックのわずかな変動が最後の取り出し ビームの質に大きく影響するので、このようなモニ ターが大変有効である。

Intensity Record

図ー8 インテンシティーレコード 上からイオン源、リニアック入口、出口、ブースター入口、ブー スター、主リング、20MeV速度モニター、40MeV速度モ ニター

参考文献

1) Z.Igarashi et al., 第17回本研究会(1992), P198.

2)M.Yoshi et al., Accelerator Study Note. SR-301 (10, MAY, 1993)

3)H.Someya et al., 第17本研究会(1992), P201.