T.Hattori, Y.Takahashi, H.Muto, E.Tojyo*, M.Sekiguchi* and K.Sawada**

Research Laboratory for Nuclear Reactors,

Tokyo Institute of Technology

* Institute for Nuclear Study, University of Tokyo

** Sumitomo Heavy Industries, Ltd.

ABSTRACT

A new ECR (HiECR) ion Source for the multiply-charged heavy ions has been designed and manufactured to demonstrate operational capabilities of higher order mode ECR (Electron Cyclotron Resonance) discharge. The main features and the design concept are described.

高次モードECR(HiECR)イオン源開発研究(I)ー 基本設計と製作 ー

はじめに

ECR(電子サイクロトロン共鳴)型イオン源は、長寿命、多価大電流のイオン生成に適する 等の理由で加速器や原子物理用として開発研究されてきた。しかし、一方でミラー磁場形成電力 が~150kW級にもなり、また相応した冷却設備も必要となるなど、装置の大型化、大電力化 という問題を抱えている。

そこで、線形加速器入射用高圧ターミナルに登載可能な必要電力50kW以下で、新しい発想 に基づく高次モードECR条件を満足する小型ECRイオン源の開発研究を行う。さらにパルス 運転モードの線形加速器に同期したECRイオン源のパルス運転特性についての基礎的研究も合 わせてそれを目標にしている。

基本デザイン、詳細設計、製作を行い、現在、真空引き、絶縁テスト等の基本テストを終了さ せている。

基本設計

今までの大型ECRイオン源はミラーと多極磁場による一次モードのECR磁場領域を作り、 その領域で加速された高エネルギー電子により中性ガスをイオン化し、多価イオンを生成するこ とを行っている。ECR領域を大きくするため必然的にイオン源自身も大きくなってきた。しか し、新しい発想として、イオン源自身を小型化し、ミラー、多極磁場を高めることで、1次、2 次、3次モードのECR領域を半径方向に出現させることが可能となる。軸方向には短くても3 重構造のフットボール形ECR領域を形成でき、 それだけでなく、磁場が強くなるためイオン がECR領域に長時間滞在し、イオンが引き出 される時に2~3重のECR領域を通過するこ とで、多価重イオンの比率が増加するはずであ る。高次モード型ECRイオン源は小型で多価 重イオンを生成するイオン源と考えられる。そ こでこがたECRイオン源として、フランス・ グルーノーブルグループのCapriceとFerromafios イオン源の既略図を参考にしてHiECR イオン源を設計した。我々の高次モードECR イオン源の製作完了後、現在、フランス・グル ノーブルグループのB. Jacqot等 (Ref1)が小型E

CRイオン源CAPRICEを使って、モードでいえば、1987年末で1.5次モードまでを完成させたことを知った。さらに彼らは将来完全な3次モードまでを考えているようである。

HiECRイオン源デザイン

概略設計によるコイルの大きさと位置より計 算機プログラムTRIMによる磁場計算を行い 2~3度のアイテレーションののち図1の配置 に決定した。図1にミラーコイルによる軸方向 の磁場の強度及びイオン源チェンバー中に出来 るECR磁場領域の断面図を示す。3次モード ECR領域はミラー磁場が弱いため完全には閉 じてはいないがかなり存在することがわかる。[■]* コイル5組に545Aを流した時の磁場を示し、 最大600Aで全アンペアーターンは1272 00ATまで通電可能である。マイクロ波6.4(10) GHzのECR磁場は1次2.3(3.6)kG、2次4.6(7.1) kG、3次 6.9(10.7)kGである。表1にHi ECRイオン源の基本パラメーターをしめす。

多極磁場強度を上げるためにNd-Fc-B系のNE-OMAX-30 の永久磁石を採用した。高次ECR領 域を形成するために、多極磁場を細密四重極磁 石とし比較用の六重極磁石も製作した。図2に HiECRイオン源の構造図を、また、イオン 源テスト装置の図を図3に示す。ECR領域は 1ステージで、高周波はミラー磁場の最大点の 半径方向より挿入する。

イオン源の製作と基本テスト

Nd-Fc-B系永久磁石により製作した多極磁場用 4 重極と6 重極磁石の断面図と、計算機プログ ラムの計算結果を図4に示す。実測値と計算値 の差は磁石材が、計算に採用した値と異なって

汊

3

いたためと思われる。製作組立後、排気テストの結果10-7Torr代に入ったので、リークはなし として中止した。放電チェンバーの絶縁テストは10kV以上にすると大気側で一部放電が起こ ったが、絶縁シートの巻き付け不良によると思われるので、手直しをせず、現在そのままテスト を続行している。高周波入力、ECRプラズマ放電テスト、イオン引出しテストを今後行う予定 にしている。 kG 8

HiECR Ion Source Dcsign Parameters

4

Microwave Power Source

Frequency 6.4GHZ or 10GHz Max. Power 2.5kW Chamber Diametor 70¢ Length multipole 15cm total \sim 25cm Multipole Magnet Hexapole Murtipolearity Quadrupole , Field Strength on the surface 9kG 7kG Material 66. 6×38 30×40 mm inner Diameter $84 \text{mm}\phi$ $84 \,\mathrm{mm}\,\phi$ Length 15cm Mirror Coil Max. field Strength on axis 8.5kG Max. Current 600A Max. Power 30k₩ Weight of Coils 70kg Return Youk Width 60mm Vacuum System Pumps 520 1/s Turbo-Molcecular Pump Sizc Length 360mm Width $530 \, \mathrm{mm} \, \phi$ 表 1 Refarence SOURCE D'IONS LOURDS CAPRICE 10GHz 2WCE 1. B. Jacquot, P. briand, F. Bourg and R. Geller Nucl. Instr. and Meth. A. 269, 1-6 (1988)