Phase rotation scheme of the ions accelerated by an intense femtosecond laser

S.Nakamura¹, A.Noda, Y.Iwashita, T.Shirai, A.Yamazaki, M.Tanabe, H.Tongu, M.Ikegami, S.Fujimoto, T.Mihara, S.Sakabe M.Hashida, S.Shimizu

Advanced Research Center for Beam Science, Institute of Chemical Research, Kyoto University

Gokasho, Uji, Kyoto, 611-0011

Abstract

A phase rotation scheme is investigated for the ion beam that is emitted from foil target irradiated by a high repetition (10Hz) high power(~10TW) short-pulse(~50fs) laser. By application of an RF electric field synchronized with the laser pulse, the ion beams in the energy range of ± 5 % is expected to be compressed into the range within ± 1 % of our goal. The experiment to demonstrate the feasibility of the phase rotation scheme is planed. However, protons with the sufficient energy couldn't be produced.

高強度短パルスレーザー起源イオンの位相回転によるエネルギー圧縮

1. はじめに

出力が数TWから数10TWでパルス幅が1psから数 10fsの高強度短パルスレーザーを数10µm程度に集光 し、物質に照射したときに、最大エネルギーが数 MeV/uから数10MeV/uの高エネルギーイオンが発生 することがわかっている。我々も、これまで、京都 大学、東京大学、関西研究所の共同実験において、 東京大学大学院工学系研究科附属原子力工学研究施 設の高強度(3TW)超短パルス(50fs)レーザーを18µm (FWHM)に集光し(照射強度6×10¹⁸W/cm²)、金属薄膜 に垂直に照射した際、数10keVから1MeV程度の陽 子が発生することを確認している^[1]。その実験にお いて、イオンの発生方向はレーザー進行方向に対し ておよそ±5°以内に集中しており、またエネルギー が大きくなるにつれて個数は指数関数的に減少して いる。

我々は、このイオンを従来の加速器に入射するこ とで加速器の低エネルギー部分を省略し、加速器の 小型化を達成することを目指している。その際、十 分なビーム強度を達成するため、目標エネルギーを 中心とするイオンにレーザーと同期したRF電場を 印加し、加減速させることで位相回転を行い、±5% のエネルギー幅のイオンを±1%以下に圧縮する試み を進めている。最終的には2MeV/uのC⁶⁺イオンを 10⁹/s生成することが目標であるが、現段階では原 理実証として、陽子に対してこの操作を行い、目標 エネルギーを中心にエネルギー圧縮することを目指 している。

今回、位相回転の実証実験を行うために、大阪大 学レーザーエネルギー学研究センター(旧レーザー 核融合研究センター)のT6-laserを使用し、250keVの 陽子を生成することを目指したが、マシンタイム中 に達成することができなかった。

2. 実験セットアップ

T6-laserは中心波長800nmのTi:Sapphireレーザーで、

繰り返し周波数は10Hzである。実験期間中のパルス あたりのエネルギーは約110mJ、パルス幅は約130fs であった。このレーザーを焦点距離165mmの軸はず し放物面鏡によって140×45 μ mに集光し(集光強度 2×10¹⁶W/cm²)、厚さ2.5 μ mのマイラー(C₁₀H₈O₄)_nに 90±1°の入射角で照射した。以下、ターゲットに対 してレーザーが進む方向を"前方"、反対側を"後 方"とする。

ターゲットから前方に1.2mの位置に位相回転用 RF Cavityを設置し、その後ろにイオン検出器として Sakabe型Thomson parabolaイオン分析器^[2](TP)にマイ クロチャネルプレート(MCP)を取り付けたものを設 置した。ターゲットからTPのピンホールまでの距 離は1.6m、ピンホールからMCPまでの距離は58cm である。RF Cavityのビーム軸は直径50mmあり、こ れをレーザー進行方向に対して±1mmの精度で合わ せ、また、直径0.3mmのTPのピンホールをレーザー 進行方向に対して±0.5mmの精度で合わせた。TPの 磁場は40~1000G、電場は0~4×10⁴ V/mの範囲で変 化させて測定を行った。

3. 実験結果

レーザーが最も集光されている位置にターゲット を設置したときに、高エネルギーのイオンが発生す るとは限らない⁽³⁾ため、ターゲットの位置を前後に 移動させながら約80ショットの積算照射を行った。 最も高エネルギーのイオンが検出されたのはレーザー の集光点から前方に0.6mmの位置であった。この位 置でのMCPの信号を図1に示す。検出されたイオン は、TPの電場と磁場から求めた理論曲線から、陽 子、炭素の4価から1価、酸素の2価と1価であること がわかる。陽子の最大エネルギーは45keVで、その ほかの炭素と酸素イオンの最大エネルギーは数 keV/u以下であった。原点から遠い方で理論曲線と MCPの信号とがずれているのは、イオンが低エネル ギーであるため、TPの電極や磁極の漏れ電場、漏

¹ E-mail: nakamura@kyticr.kuicr.kyoto-u.ac.jp

れ磁場の影響を大きく受けているためだと考えられ る。

今回の実験では、レーザーをターゲットのきれい な面に照射した時にはイオンは検出されず、一度照 射した後の面に照射した時にイオンが検出された。 ターゲットは2.5umと薄いため、一度レーザーを照 射すると穴が開き、その周辺はレーザー進行方向に 対してランダムに大きく傾いている。照射強度が 10¹⁷W/cm²のオーダーでは、イオンの発生方向はレ ザー軸方向ではなく、ターゲット面の法線方向だと いう報告があり、今回の実験の照射強度でも同様の 傾向を示すと考えられる。この実験ではレーザーを ターゲットに垂直に照射することで、レーザー軸と ターゲットの法線方向とを合わせているため、イオ ンの角度分布がΔθ=(レーザー進行方向に対するター ゲットの設置誤差)+(レーザー進行方向に対するTP のピンホールの設置誤差)以上であれば、一度目の 照射で生成されたイオンがTPで検出される。この 実験において(レーザー進行方向に対するターゲッ トの設置誤差)=±1°、(レーザー進行方向に対する TPのピンホールの設置誤差) = ±0.5/1.6×10³ = ± 3.1×10^{-4} radであるから、 $\Delta \theta \cong 1^{\circ}$ である。今回の実 験で、レーザー進行方向にランダムに傾いている二 度目の照射においてのみ、イオンを検出できたのは、 生成されたイオンの角度分布が±1°以下であるため、 ターゲット面の法線方向がレーザー進行方向と±1° 以下で偶然に重なった時しか、イオンがTPに到達 できない事を示している。

これまでの実験において、レーザー進行方向の詳

細な角度分布は測定できておらず、レーザー進行方 向とそこから約20度ごとの角度分布からおよそ±5° 以内という結果が導かれた。今回の実験結果はイオ ンの角度分布が±1°以下であることを間接的に示し ている。同一のレーザーを用いたイオン発生実験で は、照射強度1.2×10¹⁸W/cm²を達成した際に、1 MeV 以上の陽子の角度分布が2.6mradという結果が示さ れている^[4]。

4. まとめ

今後、レーザーをより小さく集光させることで照 射強度の改善を行い、位相回転の実証実験を行うた めに必要な250keVの陽子を生成することを目指す。 それとともに、ターゲット面の調整機構の導入と、 レーザー進行方向の詳細な角度分布の測定を行って いく。

参考文献

- K.Matsukado, et al., "Energetic Protons from a Few-Micron Metallic Foil Evaporated by an Intense Laser Pulse", Phys. Rev. Lett., 91, 215001, (2003)
- [2] S.Sakabe, et al., "Modified Thomson parabola ion spectrometer of wide dynamic range", Rev. Sci. Instrum., 51, 1314, (1980)
- [3] Y.Wada, et al., "Ion Production Enhancement by Rear-Focusing and Prepulse in Ultrashort-Pulse Laser Interaction with Foil Targets", Jpn. J. Appl. Phys., 43, L996, (2004)
- [4] S.Okihara, et al., "Energetic Proton Generation in a Thin Plastic Foil Irradiated by Intense Femtosecond Lasers", J. Nucl. Sci. Tech., 39, 1, (2002)

図1:MCPによって検出したイオンのパラボラ。

陽子の最大エネルギーは約 45keVで、その他のイオンは数 keV/u以下である。低エネルギー側 にカットオフがあるのはMCPの感 度面による。

原点付近にみえる同心円状の信 号はピンホールを抜けてきたX 線、又はプラズマの発光によるも ので、最も強い中心付近はMCPの 直前に厚さ5mmの鉛板を設置して いる。