炭素薄膜の膜厚測定

末長 清和^{1,A)}、景山 雄生^{A)}、宮田 智弘^{A)}、山本 貢^{A)}、成田 克久^{A)}、小林 千広^{A)}
佐野 悦信^{A)}、仲伏 廣光^{A)}、村松 正幸^{B)}、北川 敦志^{B)}、村上 健^{B)}、佐藤 幸夫^{B)}
A) 加速器エンジニアリング株式会社
〒263-0043 千葉県千葉市稲毛区小仲台2-13-1
^{B)} 放射線医学総合研究所

〒263-0043 千葉県千葉市稲毛区穴川4-9-1

概要

HIMAC[1]で使用される荷電粒子は線形加速器で 6MeV/nまで加速された後、炭素薄膜でできたホイル ストリッパーによって荷電変換される。

ビームラインには10~350 µg/cm²までの様々な厚さ のホイルストリッパーが用意されており、基礎研究 における荷電変換効率[2]の調査の他に供給ビームの 価数調整のために厚さの異なるホイルが利用される。

荷電変換効率の調査やビームの価数調整を精度良 く行うためにはホイルの厚さ(以下、膜厚)を知る 必要がある。これまでの調査の結果、メーカーが測 定した膜厚とビームラインに組込まれたホイルの膜 厚が必ずしも一致しないことが分かっている。その ためHIMACではホイルストリッパーを通過したビー ムのエネルギー損失量を測定し、エネルギー損失量 とストッピングパワーとの関係から膜厚を計算によ り求めている。

最近の測定の結果、期間を置いて測定した膜厚を 比較すると使用頻度の大きい薄膜は膜厚が増加し、 逆に使用頻度が小さい薄膜では膜厚が減少している 傾向が見られた。

この論文ではHIMACで採用している膜厚測定方法 を説明するとともに膜厚の経時変化に関する測定結 果について報告する。

1. ホイルストリッパーの製作

ホイルストリッパーの製作で我々が採用している 方法は一般的なものである。ガラスプレートに蒸着 されたホイルを水に浮かばせてフレームに貼り付け る。図1に水に浮かんだホイルをフレームに貼り付 けようとしているところの写真を示す。

水にはイオン交換樹脂により18 MΩ cmに浄化さ れた純水を使用しているが、容器やガラスプレート の汚れ、剥離剤などが水に溶け込み、不純物として ホイルストリッパーを汚染する。

このようにして製作されたホイルストリッパーは アルバレ線形加速器の出射口から約10cmの位置に組 込まれる(図2)。

図2:測定系レイアウト

2. 膜厚測定方法

膜厚測定に利用するビームラインを図2に示す。

アルバレ型線形加速器(ドリフトチューブリナック; DTL)によりイオンビームは6 MeV/nまで加速 される。加速された粒子はDTL出射口から約10cmの 距離に置かれたホイルストリッパー(荷電変換器) を通過し荷電変換されるとともにイオン種とエネル ギーによって決まるストッピングパワーに従いエネ ルギーを落とす。この後イオンビームは上下2台の シンクロトロン及び線形加速器直後の実験コース

¹ E-mail: aec2g@nirs.go.jp

(MEXPコース) に輸送される。

MEXPコースにはストレートラインから MEXP コースにビームを偏向する(偏向角20度)1台のス イッチングマグネット(SWM)とビームを更に偏 向して(偏向角70度)ビーム利用室に導くための1 台の偏向電磁石(BM)がある。また偏向された ビームの位置を検出するためのプロファイルモニタ

(PM) が下流に設置されている。

PMにはタングステンワイヤを使用しており、径 0.1mm、間隔1.25mmである。

ホイルストリッパーの膜厚測定ではMEXPコース を利用する。厚さの異なるホイルを通過して発生し たビームのエネルギーの違いが偏向電磁石通過後の プロファイル重心位置の変化として観測できるため である(図3)。

図3:ホイル有無によるビームプロファイルの変化

図3 においてP₀はホイルがない状態での運動量、 Δpはホイルを入れた時の運動量の変化、x₀はホイル がない状態でのビームプロファイルの重心、Δxはホ イルを入れた時にビームプロファイルの重心が移動 した量を表している。

運動量が変化したビームのPMにおけるプロファ イル重心の移動量Δx [mm]は次式によって表される。

$$\Delta x = D \frac{\Delta p}{p} \tag{1}$$

Dは分散関数でMEXPラインではD \cong 2[m]、pはDTL から出射するビームの運動量、 Δ pはホイル通過に より変化した運動量である。

運動量とエネルギーの間には次の式が成り立つ。

$$\frac{\Delta E}{E} = 2\frac{\Delta p}{p} \tag{2}$$

EはDTL加速後のエネルギー(6 MeV/n)である。式(1) と(2)から、ホイル通過によるエネルギー変化量ΔE が得られる。

$$\Delta E = \frac{2E}{D} \Delta x \tag{3}$$

 $E \ge D$ はそれぞれ定数であり Δx は測定により得られる。

以上の方法によって得られたΔEとストッピング パワー[3](単位厚さあたりのエネルギー損失量; S [keV/n/(µg/cm²)])とから炭素薄膜の厚さt [µg/cm²] を計算することができる。

$$t = \frac{\Delta E}{S} \tag{4}$$

膜厚測定に利用するビームにはN⁶⁺を採用した。

既に記したように、我々の測定ではホイルが無い 状態でのPMにおけるビーム重心位置を基準にして おり、ホイル内での荷電変換過程により基準にした ビームの価数が変化してビームがなくなってしまう と膜厚の評価ができなくなる。Nビームの一部は350 µg/cm²までの炭素薄膜ではフルストリップされずN⁶⁺ がMEXPコースに輸送される。

6MeV/n Nビームのストッピングパワーは20.7 keV/n/(100 μ g/cm²)である。またビームプロファイル の重心位置検出精度が0.1mmであることから、エネ ルギーについての分解能は0.6 keV/nであり、これは 2.90 μ g/cm²の膜厚に相当する。つまり2.90 μ g/cm²よ りも厚いホイルの膜厚測定を精度良く測定すること ができると言える。

以上に記した膜厚測定方法は薄膜を実際に使用す る条件と同条件で実施される点で膜厚評価をする上 で信頼性が高いと思われる。

3. 結果

3.1 膜厚のメーカー測定値と実測値

上記測定方法に基づいて測定、算出した値を表1 の右欄に示す。また、同時にメーカー測定値も併記 する。メーカー測定値に比べ実測値が大きくなって いるのは次の理由によると考えられる。炭素薄膜を フレームに装着する工程として水に一旦浮かべなけ ればならない。この時に水に溶け込んだ汚れや剥離 剤が膜に付着されたことにより膜厚に影響を与えた のではないかと考える。

公称值	メーカー 測定値	実測値
10	8.9	11
20	22.6	20
30	30.9	28
40	42.9	39
50	53.2	52
100	98.1	115
200	192	206
300	317	329
300	322	351

表1: 膜厚のメーカー測定値と実測値 (単位:μg/cm²)

3.2 膜厚の経時変化

図4 : 膜厚の経時変化

上図は10~40µg/cm²、下図は50~350 µg/cm²の薄 膜の膜厚変化率を表す。膜厚変化率は2002年9月 の実測値に対する2003年4月の実測値の変化率を ます

図4をみると約20µg/cm²未満の薄膜の膜厚は増え ていてそれ以上は減っている。ただし普段よく使用 している128µg/cm²の薄膜だけは例外的に増えてい る。

約20µg/cm²未満の薄膜の膜厚が増えていることに ついては良く分からないので現在調査をしている。 一方、約20µg/cm²以上の薄膜の膜厚が減っている のは、薄膜をフレームに取り付ける際に付着したと 思われる水や付着物がスパッタリング等により徐々 に放出されたためではないかと考えられる。ただし 普段ビーム供給で頻繁に使用している128µg/cm²の 薄膜については逆に膜厚が増加している。これにつ いては使用中に薄膜に撓みが生じて見かけ上膜厚が 増加したように見えたのではないかと考える。

4. 今後の課題

以上のことから今後の課題として

- ・フレームに炭素薄膜を装着した後の工程として真 空乾燥工程の導入を検討している。
- ・炭素薄膜の使用可能な頻度(又は期間)を確認する意味で炭素薄膜の観察をしていきたい。

5. 謝辞

本論文を完成するまでに、独立行政法人 放射線 医学総合研究所の諸先生から、貴重なご意見を賜り ここに深く御礼申し上げます。また、薄膜の購入先 である薄膜メーカー及びフレームメーカーの方には ご協力戴き有難うございました。最後に膜厚測定に あたり御尽力戴きました加速器エンジニアリング株 式会社の諸氏に深く感謝申し上げます。

6. 参考文献

- A. Kitagawa, et al., Status of ion sources for the heavy ion medical accelerator HIMAC, Rev. Sci. Instrum. 67, No. 3, Part II (1996) 962-964.
- [2]Y.Sato et al,Nucl.Instrum. and Meth. In Phys. Res. B201(2003)571 580
- [3]HAND BOOK of STOPPING CROSS-SECTIONS FOR ENERGETIC IONS IN ALL ELEMENTS Volume 5 of The Stopping and Ranges of Ions in Matter, edited by J.F. ZIEGLER, IBM-Reserch, Yorktown Heighs, N.Y.10598, pp.93(1980)