小型逆コンプトン散乱硬 X 線源開発

上坂 充^{1,A)}、深澤 篤^{A)}、飯島 北斗^{A)}、吉井 康司^{A)} 浦川 順治^{B)}、肥後 寿泰^{B)}、明本 光生^{B)}、早野 仁司^{B)} ^{A)}東京大学大学院工学系研究科附属原子力工学研究施設

〒319-1188 茨城県那珂郡東海村白方白根 2-22

^{B)} 高エネルギー加速器研究機構

〒305-0801 茨城県つくば市大穂 1-1

概要

文部科学省のプロジェクト『先進小型加速器開発』 が平成13年度から5年計画で始まった。この計画で は、小型のがん治療用重イオンシンクロトロン加速 器と動的血管造影用逆コンプトン散乱硬X線源が開 発される。8つの国立大学、研究所が参加し、仮想研 究所(Virtual Laboratory)を形成する。

1. はじめに

加速器は大型装置の部類に属しており、そう容易 には利用することができない。ビーム利用の拡大の ためにはテーブルトップの大きさ程度にまで小型化 する必要がある。そこで、平成13年度より5年計画 で文部科学省(電源特別会計立地勘定)プロジェク トとして、小型加速器開発事業がスタートする。こ れは、最先端の加速器・レーザー・プラズマ技術を 駆使して加速器を小型化し、重イオンシンクロトロ ンによるガン治療システム(図1参照)と、逆コンプト ン散乱X線源による動的血管造影システム(図2参 照)を開発するものである。研究体制は、放医研、 東大原施、高エネ研、原研関西研、京大、産総研、 阪大レーザー研、広島大が我が国初の試みである仮 想研究所を組み、開発研究を円滑に推進する(図3参 照)。東大原施は後者システムの主担当として参画す る。本システムを所定の期間内に実現させ、病院へ の設置や、派生する様々な基礎研究展開、産業応用 の形で地域社会に貢献していく。

2. 小型逆コンプトン散乱 X 線源

硬X線の発生は従来ではGeV程度の大型の電子貯蔵リングのアンジュレータで行われてきた。しかし、 高強度のレーザーを用いた逆コンプトン散乱では 100 MeV 以下の低エネルギーの線形加速器で十分で

ある。本研究の最終目的は動的血管造影を行える ような小型のシステムであり、それに要求される X 線のパラメータは 33 keV、10¹¹ photon/10ms である。 システムの小型化のために、Sバンドの1/4の大きさ のXバンド加速器について研究が進められている。 現時点での加速管とクライストロンの仕様はそれぞ れ表 1,2 の通りである。電子銃は別途 SPring8 との共 同研究で、S バンドフォトカソード RF ガンについて 性能向上のための研究がなされるのでこの結果を適 用する。現在は X バンドフォトカソード RF ガンを 計画しており、カソード材料としてはまずは Mg (Q.E.=0.1%, 4.7µJ/1nC@263nm)で行い、将来的には透 過型のダイヤモンド薄膜 (Q.E.=50%, 12nJ/1nC@213nm)にすることを視野に入れている。 PARMELA による解析では最終的に 240 pC、4.2 ps (FWHM)、8 π mm.mrad の電子ビームが得られている

図1:重イオンシンクロトロン

¹ E-mail : uesaka@tokai.t.u-tokyo.ac.jp

図2: 逆コンプトン散乱 X線源による動的血管造影システム

が、さらなる改良が必要であることは明らかである。 高強度レーザーはレーザースーパーキャビティによ り CW レーザーを増幅することで 100MW/7ns 程度を 得られるように、KEK で研究が進められている。こ れらを組み合わせただけでは 10⁵ photons/shot 程度し か得られないため、電荷量とレーザーパワーを上げ る必要がある。1 shot 当たりの電荷量を増やすための 工夫として、電子銃駆動レーザーをマルチパルス化 することを検討している。レーザーは 10 J/1ps のよう なものが欲しいが、それには CO₂ レーザーや Nd:Glass レーザーなど大型の装置が必要となってしまい安定 性にも問題があるため、それら以外の手段を模索中 である。

今年6月18-22日に行われた ICFA Beam Dynamics Workshop on Laser-Beam Interactions (Stony Brook)や、 24-30日に行われた PAC2001 (Chicago)では、S バンド 以上の RF ライナックとTW レーザーとの逆コンプト ン散乱 X 線源の開発と計画は世界で10件にも上る。 また、X (9.3, 11.424 GHz)、Ku (17.2 GHz)、Ka (30, 34.3 GHz)、W (90 GHz)バンド、THz、プラズマプラズマ カソード、真空レーザー加速器など超高周波小型ラ イナックの研究も特にアメリカにて盛んである。す べて医療など産業応用を狙っている。

表1:Xバンド加速管仕様

運転周波数	11.424 GHz
加速モード	2π/3 モード
加速管長	0.75 m
加速管タイプ	RDS 型
シャントインピーダンス	平均 93 MΩ/m 以上
Q值	計算値の 95%以上
入力電力	20 MW

表1:クライストロン仕様

クライストロン	
出力電力	40 MW
RFパルス	1.0 µs (平坦部)
効率	37 %
パービアンス	0.8 µ
ビーム電圧	449 kV
ビーム電流	221 A
モジュレータ	
ピーク電力	108 MW
一次出力電圧	32 kV
一次出力電流	3.4 kA
パルス幅	2.5 µs (FWHM)
平坦部	1.0 µs
繰り返し	50 pps
平均電力	13.6 kW

3. レーザープラズマビーム源

レーザープラズマ電子・イオン源の可能性の追求 も本プロジェクトに含まれている。の当施設ではこ の十年間プラズマ航跡場加速について、KEK、JAERI と共同で多くの先進的な研究が続けられてきた。近 年我々は、12 TW 50 fs レーザーパルスにより 10 fs 単バンチ電子ビームを発生させるレーザープラズマ ライナックの研究を進めている。ガスジェット中の レーザー強度が上昇するにつれ、プラズマ航跡場は 線形の正弦波から波の先頭が鋭くなる非線形に変化 していき、プラズマ中の電子の動きも非相対論から 相対論的になる。最終的に臨界値を超えると航跡場 の波が崩れて、波のエネルギーが電子ビームの進行 方向のエネルギーに変換される。構成を図4に示す。 2D-PIC (Particle In Cell)によるシミュレーションによ ると25 MeV (max)、12 fs (FWHM)、2.8 π mm.mrad (rms)、10¹¹ electrons/bunch の電子ビームが発生される。 我々はこの発想と約10fsの極短電子ビームバンチの

「放射線利用技術・原子力基盤技術移転等委託事業」の一環

図3:研究体制(仮想研究所)

発生を実験的に立証することを計画している。電子 バンチを計測したのち、レーザービームスプリッタ ーと光学的遅延ラインを用いて数 10 fs 時間分解能 pump & probe 分析システムを構築することも計画し ている(図5)。同期が受動的に行われるため、遅 延ラインを 5 μm 動かすことで 33 fs の遅延をタイミ ングジッターなしで得ることができる。

銅板に高強度レーザーを照射し、短パルス X 線を 発生させることに成功している。これは銅板上にプ リパルスにより生成されたプラズマの電子をメイン パルスの動重力で加熱し、その電子が銅をたたくこ とで特性 X 線を発生させる。これを用いて GaAs の フォノンの伝達を示す回折像の歪みを 50 ps 間隔で 得ている。これらはシミュレーションとも良く一致 しており、この方式による時間分解計測の手法が確 立された。この応用として、タンパク質動的構造解 析、時間分解 X 線イメージングフォログラフィなど を計画している。

高強度レーザーを金属箔に照射することで、短パ ルスイオンビームを発生することも可能であると考 えられている。この機構は電子が加熱されるところ までは上記と同様だが、加熱された電子は外側に分 布するため内側にはイオンが取り残され、イオン同 士が反発し合いクーロン爆発を起こす。さらに一部 のイオンは外側の電子と内側のイオンにより作られ る電場により加速される。この現象を解明するため にレーザープラズマイオンの諸特性を調べる実験が 行われている。ビームに垂直に電場と磁場を同一方 向にかけてそのイオン核種、価数、エネルギーの特 定が可能なトムソンパラボラ法による測定が銅につ いて行われた。その結果 12-18+、50-220 keV、1.1x10⁵ ions/sr/shot のビームの発生を確認した。今後はレー ザー条件による違い、他の核種などより詳細なデー タの取得を行っていく。

図4:レーザープラズマライナックによる 10fs 電子シングルバンチ生成