KEK 電子陽電子入射器パルス偏向電磁石用ステンレスチェンバーの検討

EXPERIMENTAL SUTUDY OF STAINLESS STEEL CHAMBER FOR A PULSED BENDING MAGNET OF THE KEK E-/E+ INJECTOR LINAC

柿原和久^{#, A)}, 紙谷琢哉 A), 惠郷博文 A), 横山和枝 A), 田中窓香 A), 夏井拓也 A), 榎本嘉範 A), 清宮裕史 A), 佐藤政則 A), 飯田直子 A), 吉田光宏 A), 肥後壽泰 A), 峠暢一 A), 古川和朗 A), 鈴木和彦 B), 木村康一 B)

Kazuhisa Kakihara A, Takuya Kamitani A, Hiroyasu Ego A, Kazue Yokoyama A, Madoka Tanaka A, Takuya Natsui A, Yoshinori Enomoto A, Yuji Seimiya A, Masanori Satoh A, Naoko Iida A, Mitsuhiro Yoshida A, Toshiyasu Higo A, Nobukazu Toge A, Kazuro Furukawa A, Kazuhiko Suzuki B, Koichi Kimura B, A, High Energy Accelerator Organization (KEK), Accelerator Laboratory

B, Mitsubishi Electric System & Service Co.,Ltd.

Abstract

KEK injector linac has two-storied pre-injectors; one for a high-intensity primary beam for positron generation and the other for a low-emittance electron beam. The primary beam generated by a thermionic gun on the upper stage is merged into the lower beam-line by two DC bending magnets and three DC quadrupole magnets. The DC bending magnets will be replaced with pulse bending magnets for pulse-by-pulse switching of the beams from the two pre-injectors in Phase-III operation of SuperKEKB. To evaluate operation condition of the pulse magnets and stainless steel chambers, we performed simulations and measurements on the heat generated by eddy current and the von Mises stress in the temperature rise. The estimated stress, the measured temperature distribution and outgas in the chambers demonstrated full operation in 50 Hz full pulse repetition. However the measured temperature rise in the coils of the magnets limited the operation time to be less than an hour at 50 Hz or full operation at 25 Hz or lower.

1. はじめに

KEK 電子陽電子入射器 (LINAC) は SuperKEKB と放射光施設の合計4つの蓄積リングへ、それぞれ 異なる特性を持つビームを供給している。 SuperKEKB は LINAC と 7GeV 電子リング (HER)、 3.5GeV 陽電子リング (LER) で構成される衝突型加 速器で、2010年まで運転を行った KEKB の 40 倍の ルミノシティを目指し、大電流・低エミッタンスの 電子・陽電子ビーム実現のための様々な改造とコ ミッショニングが進められている。2017年 10 月か ら今年7月までのPhase-II運転では、低エミッタン スの陽電子を得るためのダンピングリングが稼働を 始め、4 月には電子と陽電子の衝突が確認された[1]。 現在は 2019 年 3 月から始まる Phase-III運転に向け たアップグレードが進められている。一方、放射光 実験施設の Photon Factory (PF) と PF Advanced Ring (PF-AR) は 2.5GeV と 6.5GeV の電子リングで、放 射光利用実験のため年間 3 千人を超える研究者が利 用しており、これまで通りの安定したビーム供給が 求められている。このような 4 つのリングに対し状 況に応じた最適な入射を行うために、50Hz のビー ム繰り返しの中でパルス毎に供給先のリングを切り 替える同時入射が要望されている。そしてそのため には、LINAC の 2 台の電子銃から出てそれぞれの ビームラインを通ってきた 2 種類のビームを、パル ス毎に供給先のリングに向けて切り替える入射を行 えることが理想的であり、それを目指して順次改造

を進めている。

現在の LINAC は低エミッタンス電子ビームが要求されている HER 入射のための RF 電子銃と、陽電子生成用大電流電子ビーム及び PF と PF-AR 入射用の電子ビームを生成するための熱電子銃が併用されている。これらの2つの電子銃とそれぞれに後続する前段加速部は二階建ての構成となっており、1 階部分の RF 電子銃からのビームラインは床上1200mm 高の位置に、2 階部分の熱電子銃からのビームラインは床上1950mm 高の位置に設置されている。2階からのビームは Fig. 1 のような 24 度の斜めラインを通って 1 階部分に合流する[2]。

この 24 度斜めラインは 2 つの 24°垂直偏向電磁石と 3 つの四極電磁石により構成されている。現在この偏向電磁石は他のビームラインで使用されていた 30°セクター型 DC 電磁石を転用(コイルのみ新作し

Figure 1: Two beamlines of the thermionic electron gun and the rf gun merged by 24-degree bending magnets.

^{*}kazuhisa.kakihara@kek.jp

て磁極部分を再利用)してビームを 24°偏向して使 用している。これらの偏向電磁石が DC 電磁石であ るため、2階からのビーム入射と1階部分からの直 進ビーム入射は比較的ゆっくり(最速でも数秒かけ て)切り替えている。次のステップとしてこれらを パルス偏向電磁石に置き換えることになった。スケ ジュールの制約により、現在使用している DC 電磁 石と同様の断面形状を持つ積層鋼板の打ち抜きの型 を転用して、24°セクター型偏向電磁石を製作した。 しかし転用した元のパルス偏向電磁石はより低いパ ルス繰り返しでの使用を想定したものである。この ため 24 度斜めライン用に製作したパルス偏向電磁 石の最大 50Hz パルス繰り返しでのコイルでの発熱、 ステンレスチェンバーでの渦電流による発熱につい ての考慮が十分ではなく、特に当初想定したチェン バーでは温度上昇が大きく使用に耐えられないこと が分かった。このため電磁石の磁極、ヨークに収ま る範囲で側面に冷却水配管を取り付けた水冷式チェ ンバーを製作し、当面これで使用可能な範囲を評価 した上で使用することにした。

本報告ではこのパルス偏向電磁石の設置運用に向けて、この水冷式ステンレスチェンバーについて運転条件下での電磁場発生、発熱、冷却のシミュレーションによる検討、及びテストスタンドでのパルス偏向電磁石とチェンバーの通電試験による発熱測定、ガス放出測定を行い使用可能な条件の評価を行ったので、これらの詳細について述べる。この評価の結果としてビーム運転用電流値に対して 25Hz パルス繰り返し以下での使用には問題ないことが分かったので、今年 2018 年の夏季停止期間にビームラインに設置することにした。

2. 24°偏向電磁石とチェンバー

2.1 パルス偏向電磁石

現在使用中の DC 偏向電磁石と 2018 年 10 月に設置されるパルス偏向電磁石の仕様を Table 1、ヨークの形状を Fig. 2 に示す。DC 偏向電磁石の基本的な形状、寸法を変えることなく、同じ型の積層鋼板を使ってパルス化したものである。

Table 1: Specifications of Bending Magnets

電磁石タイプ	DC / 空冷	パルス / 空冷
運転電流値 [A]	77.6	218
運転磁場 [T]	0.469	0.463
磁極間距離 [mm]	20	20
磁極幅 [mm]	40	40
磁場有効長 [mm]	173.16	175.28
コイル導線巻き数	48 ターン	18 ターン
	/コイル	/コイル

2.2 パルス偏向電磁石用チェンバー

電磁石とチェンバーは一組として設計が進められることが望ましいが、新たに設置するパルス偏向電

磁石はチェンバーに先行して製作されたことから、 チェンバーはいくつかの制約条件の下での設計・製作となった。主な条件は、(1)アパーチャはビームロスが発生せず電磁石に収まるサイズであること、(2)パルス磁場中に設置されるため、金属製の場合は渦電流による発熱が温度、強度、真空的に問題なく、必要な磁場が確保できること、の2点である。

Figure 2: Pulse bending magnet.

セラミックス製は熱的問題がほとんどなく(2)の条 件は満足できるものであるが、金属製と比べると(1) のアパーチャの確保が困難である他、納期が不確定 で長期、高価格、取り扱いに注意が必要等のデメ リットもある。2 つのビームが合流する下流側チェ ンバーでは垂直のアパーチャを大きくとることにな る。一様な矩形開口部形状を持つセラミックス製 チェンバーを検討した際、必要十分な垂直の寸法を 74mm としたとき、メーカーが推奨する必要な板厚 は 3.5mm、公差を含めたとき最大 4.5mm であった。 磁極間距離 20mm に対しセラミックス矩形管の外幅 を 19mm とすると、水平のアパーチャは 10mm にな り、現在使用しているステンレスチェンバーの 13mm よりも 3mm 小さくなることからビームロスの 発生が懸念される。上流側チェンバーは 1 本のビー ムライン用であるため下流側より小さな垂直アパー チャで良いが、それにより板厚が 1mm 薄くできた としても水平アパーチャは公差を含めると 12mm の 場合があり得るため、現状よりも 1mm 小さくなる。 一方ステンレス製の場合、2mm の板厚にすることも 可能で、その場合水平アパーチャは 15mm となり現 状よりも余裕が持てる。

我々は(1)の条件を重視して、ステンレス製チェンバーをパルス偏向電磁石に使用することの検討を始めた。基本形状はビーム軌道に沿って横 14.5mm 縦 34mm のアパーチャを 2mm 厚の電解研磨処理 (EP)済み SUS316L 板材で形成しており、冷却水用配管が磁束と平行な面に設けてある。そして(2)についてはシミュレーションと実機での測定により、使用可能な運転条件がどのレベルにあるのかを調査することにした。

3. シミュレーション

3.1 電磁場解析

パルス偏向電磁石の磁場測定結果から得たコイル

の電流値や電磁石駆動電流波形等を電磁場解析ソフトウェア(ANSYS)に取り込み、ステンレスチェンバーに発生する渦電流分布とチェンバーでの渦電流損を求めた(Fig. 3)。渦電流は熱伝達率の大きい冷却水管付近に多く分布することが分かった。そして50Hz 繰り返し時の平均発熱量は上流側が254W、下流側が316Wと算出した。

Figure 3: Eddy current distribution (left), eddy current loss (black line on the right), excitation pattern (red line on the right).

3.2 熱構造解析

電磁場解析での結果からステンレスチェンバーの温度と相当応力の分布を ANSYS により計算した。冷却水流量 $3L/\min$ 、同温度 29° C、室温 25° C、チェンバー内部真空の条件における上流側、下流側チェンバーの解析結果を Fig. 4 に示す。上流側は最高温度 54° C、最大相当応力 38MPa で問題なく 50Hz 運転が可能である。一方下流側はそれぞれ 89° Cと 153MPa で SUS316L 材の 0.2%耐力 200MPa 以下に収まっており、こちらも 50Hz 運転での使用は可能であると判断できる結果が得られた。

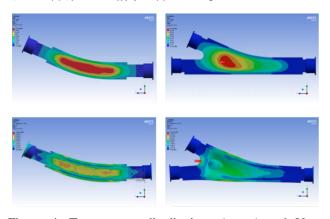


Figure 4: Temperature distributions (upper) and Von Mises stress distributions (lower) of the upstream chamber (left) and the downstream chamber (right).

4. 実機モデル評価試験

4.1 温度特性評価試験

実際にパルス偏向電磁石にステンレスチェンバーを組み込み、パルス電磁石の電流値、繰り返し、パルス幅を加速器運転時の使用条件としたときのチェンバーの温度上昇とシミュレーション結果との整合性、使用可能な運転条件の確認を行った。

初めにパルス電磁石の電流-磁場特性を測定した。 ガウスメーターのプローブを磁力線の向きに合わせ た測定では、磁場値が 0.4T を超えたところで測定値 が不安定になり、低い磁場からの外挿値に比べて約 10%の大きな値を示したため、磁場の値によってガ ウスメーターの較正にずれがあると考えられた。これを避けるためにプローブを 45 度傾けて、測定磁 東量を実行的に下げて得たデータで多項式フィット を行い、プローブを磁力線の向きに合わせたときの データに合うように一律 1.28 倍の補正ファクターを 入れて電流-磁場特性の推定曲線とした。またチェン バー有りと無しのときの磁場を 210A で比較すると、 有りのときには約 6%の低下が見られた (Fig. 5)。

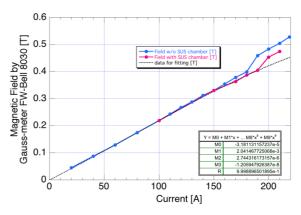


Figure 5: Comparison of magnetic field intensities with and without the stainless steel chamber.

次に、使用する温度センサーの較正がどれくらい正しいかを調べた。表面温度測定用センサー [(株)チノー測温抵抗体(R60-39)、測定範囲 $0\sim200^{\circ}$ C、素子 Pt100]で沸騰した水を 2 分間測定したとき平均 99.96 $^{\circ}$ C、 σ =0.19 $^{\circ}$ Cであった。また温度センサー自身が磁場中の渦電流による発熱を起こして温度測定値に誤差を与える恐れがあるため、チェンバー無しで磁場中に温度センサーだけを入れて温度上昇を測定した。パルス電磁石 200A、0.432T の磁場中に本センサーとアルコール温度計を置いた 2 時間の温度比較測定では、コイルの温度上昇によると考えられる周辺空気の温度変化が両方共に約 6° C確認できた。その差は 0.6° C未満であったことから、磁場によるセンサーの発熱は無視できる量で使用上の問題は無いと判断した。

測定はより発熱量の多い下流側チェンバーで実施した。温度測定位置はシミュレーションの結果最も高い温度を示す範囲内(81~89°C)の6箇所(最高温度は測定点2)を含む9箇所の他、コイルを加えた合計10箇所とした(Fig.6)。温度測定ではセンサーと被測定物の接触が特に重要となる。本試験ではガラステープでセンサーをチェンバーに固定して、耐熱ラバー(シリコンゴム)を電磁石ヨークとの間に挟むことで接触を維持する方法とした。ただしこの場合ラバーにより放熱が阻害されることで実際より高温になることが懸念されるため、極力少量の使用とした。別途ラバーによる温度上昇分の測定では、

90℃のとき 3℃程度であった。またヨークから外れる位置にある測定点 1 と測定点 8 はガラステープ、耐熱ラバーの他、PEEK 製ボルトとナット及び束線バンドでセンサーを押さえた。

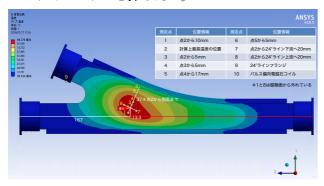


Figure 6: Position of surface temperature sensors in excitation test of the pulse bending magnet with the downstream chamber.

温度センサーを取り付けた下流側チェンバーをパルス偏向電磁石に組み込み、磁場 0.469T (218A)、パルス繰り返し 25Hz、30Hz、50Hz の順で磁場中の各測定点温度を測定した。チェンバーに流した冷却水は流量 3L/min、温度 29°C、チェンバー内部はスクロールポンプ 250L/min で真空排気を継続した。励磁開始から 3 時間のチェンバーとコイルの測定結果を Fig. 7 に示す。図のチェンバーの温度はシミュレーションで最高温度を予想した測定点 2 より約1°C高い温度を示した測定点 1 の経過を表している。25Hz、30Hz のときチェンバーの最高温度は 57.5°C ($\Delta T = 28.5$ °C)、63.5°C ($\Delta T = 34.5$ °C)で上昇温度は繰

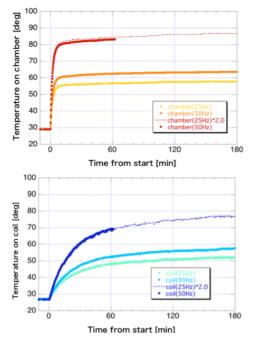


Figure 7: Temperature on the downstream chamber (upper) and coil (lower) during magnetizing the pulse magnet.

り返し比と同じ 1.2 倍が確認できた。これより 50Hz 時は 86 $^{\circ}$ Cと推定した。一方コイルの 3 時間後の 25Hz、30Hz の温度は 52 $^{\circ}$ C (Δ T=25 $^{\circ}$ C)、57.5 $^{\circ}$ C (Δ T=30.5 $^{\circ}$ C)で、50Hz 時は 77 $^{\circ}$ Cであった。3 時間後も緩やかな温度上昇が続いていることからそれ以上の温度になることは確実である。コイルの使用上限を70 $^{\circ}$ Cに設定していることから 50Hz での運転可能な時間は 1 時間程度と見積もった。最後に 50Hz 運転を行い、コイルが予想通り 1 時間で 70 $^{\circ}$ Cに達したところで測定を終了した。

以上の測定結果から、50Hz 運転におけるステンレスチェンバーの最高温度は 86℃程度になることが予想でき、これはシミュレーション結果の 89℃とほぼ一致しており使用は可能である判断できる。ただしコイルは 1 時間以内に限定するという条件が付くため、新たな設計が必要である。

4.2 真空特性評価試験

ステンレスチェンバーの温度上昇によるガス放出速度の増加が運転上問題とならないレベルであるかを判断するため、よりガス放出量が多くなる下流側チェンバーのガス放出速度(q)の測定をスループット法で行った。本測定法は測定したい真空容器と排気系の間にコンダクタンス(C)の分かっているオリフィスを取り付けて、真空容器の圧力(P1)と排気系の圧力(P2)からオリフィスを通過してくる真空容器から放出されたガス分子の量を求めて、それを真空容器内壁の表面積(A)で割ることで単位面積当たりのガス放出量=ガス放出速度を求めるもので、式(1)で表される。

$$q = \frac{C(P_1 - P_2)}{A} \tag{1}$$

2 個の真空ゲージで計測した値の差が重要となるため、まず P_1 と P_2 を測定するゲージ 1 とゲージ 2 の較正を行った。ゲージは排気作用を持たない種類が望ましいが、本測定ではコールドカソードゲージ(CCG: IKR070, PFEIFFER)を同一容器に取り付け $10^{-1}\sim 10^{-5}$ Pa の範囲を比較した。較正後の P_2 の圧力を P_{2c} としたとき $P_1 = P_{2c} = P_2/0.9$ であった。

次に本測定で使用する真空部品のガス放出量を低 減するため、ベーキング(150℃×24 時間)した ゲージ、バルブ、配管を組み合わせてガス放出速度 の測定を実施した。使用機器は(1)ゲージ 1:CCG、 IKR070[PFEIFFER]、(2)チェンバー: SUS316L、EP 処理、 $A=63.2m^2$ 、(3)オリフィス: ϕ 5、3t、 $C=2\times10^ ^{3}$ m 3 /s、(4)ゲージ 2:CCG、IKR070[PFEIFFER]、(5) アングルバルブ: Series54-DN40[VAT]、(6)ゲージ 3: Pirani+CCG、PKR261[PFEIFFER]、(7)ターボ分子 ポンプ:ATP80[adixen]の順で接続した。パルス偏向 電磁石の磁場は 14 時直前まで 0.443T、25Hz のパル ス繰り返し、それ以降運転磁場の 0.463T に切り替え た。測定の様子と結果を Fig. 8、Fig. 9 に示す。常温 時に 3.7×10-7Pam³/s/m² であったガス放出速度は最大 時に 7.0×10⁻⁷Pam³/s/m² まで増加した。ガス放出速度 の差は 3.3×10⁻⁷Pam³/s/m² であったことから、50Hz 時には 1.0×10-6Pam³/s/m² 程度になることが予想され

る。また励磁開始から 25 分弱で最大に達した後励 磁停止までの約 40 分間は 0.8℃の温度上昇の中、ガ ス放出速度は 6×10⁻⁸Pam³/s/m²の減少が見られた。こ れらの結果から 50Hz 運転時の初期にはガス放出速 度は 1.0×10-6Pam³/s/m² 程度まで上昇するが、その値 は電解研磨したステンレス鋼と同程度であり、その 後短時間で減少に移ることから、使用する上で大き な問題にならないと判断した。またパルス偏向電磁 石と水冷式ステンレスチェンバーを設置する 24 度 傾斜合流部は全てのビームラインにゲートバルブが あり、真空的に独立することができるので、設置後 に長時間の 30Hz 励磁あるいは短時間の 50Hz 励磁を 繰り返し行う等、ガス放出速度を十分下げた上で加 速器の運転に入ることが可能であり有効であると考 える。ただし 50Hz 励磁の際は温度上昇によるパル ス電磁石損傷に十分注意して対応することが必要で ある。



Figure 8: State of the measurement of outgassing rate.

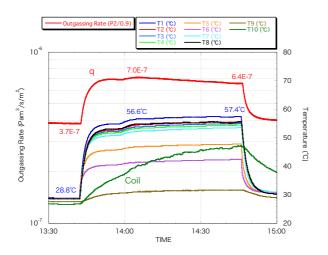


Figure 9: Measurement results of outgassing rate and temperature of the water-cooled stainless steel chamber.

5. まとめ

2018 年 10 月からの加速器運転で新たに使用する

24 度斜め合流ラインのパルス偏向電磁石と水冷式ス テンレス製チェンバーについて、50Hz のパルス繰 り返しの条件で問題なく使用可能であるかを評価す るためシミュレーションと実機試験を行った。シ ミュレーションではチェンバーの最高温度と相当応 力を求め、50Hz 運転が可能と判断できる結果が得 られた。また実機試験のチェンバー温度測定結果は シミュレーションの 86℃に対して 89℃でほぼ一致 した。ただし電磁石コイルの温度が使用上限の 70℃ に 1 時間で達することから、50Hz であれば時間や 温度の制限を設けた上での運転となり、連続運転を するのであれば 25Hz 等に限定されることになる。 また真空試験では下流側チェンバーのガス放出速度 を最大 1.0×10⁻⁶Pam³/s/m² と見積もった。設置後に電 磁石を励磁することによる脱ガス処理でその数値を 下げることは可能であり、ビームラインに新規に設 置する上で支障となる問題がないことを確認できた。

参考文献

- [1] Yuji Seimiya *et al.*, "Present status of the KEK electron/positron injector linac", these proceedings, FSP006.
- [2] Takuya Kamitani *et al.*, "Present status of the positron source upgrade for SuperKEKB", Proceedings of the 12th Annual Meeting of Particle Accelerator Society of Japan, Tsuruga, Japan, Aug. 5-7, 2015, pp. 1064-1068.