SuperKEKB 入射器におけるミスアラインメント、ジッターによるエミッタンス 増大

EMITTANCE GROWTH BY MISALIGNMENTS AND JITTERS IN SUPERKEKB INJECTOR LINAC

清宮 裕史,佐藤 政則,諏訪田 剛,肥後 寿泰,榎本 嘉範,宮原 房史,古川 和郎

Y. Seimiya^{*}, M. Satoh, T. Suwada, T. Higo, Y. Enomoto, F. Miyahara, K. Furukawa High Energy Accelerator Research Organization (KEK)

Abstract

In SuperKEKB injector linac, photocathode RF gun is used as electron source for low emittance high-charged beam. Main reason of the electron beam emittance blow-up is generally induced by wakefield in acceleration cavities. Offcenter charged beam in a acceleration cavity is affected by the wakefield depending on the offset size in the cavity and the beam emittance is increased. The emittance blow-up can be eliminated by appropriate steering magnet control so as to cancel the wake effect in the cavity. We perform particle tracking simulation with both misalignments (quadrupole magnet + acceleration cavity) and jitters (quadrupole and steering magnetic force + beam position). Emittance growth by the misalignments and the beam jitter is evaluated in this report.

1. 導入

SuperKEKB は素粒子物理実験のための電子陽電子コ ライダーであり、デザインルミノシティは KEKB[1] の 40 倍である 8×10³⁵ cm⁻²/s である。高ルミノシティのた め、入射器では高品質ビームが要求される。SuperKEKB の Phase1 は 2016 年 2 月から 6 月まで行われ、想定さ れていた様々な機器やソフトウェアのチェック、真空焼 きが大きな問題なく進められ、無事 Phase1 を終えた。 2017 年秋からの Phase2 では、最終的に低エミッタンス ビームが要求されているため、入射器では Phase2 が終 わるまでに低エミッタンスビームの輸送を確立する必 要がある。

Fig. 1は SuperKEKB 入射器の概略図である。入射 器は、A, B, J-ARC, 1~5のセクターから成る。規格化 エミッタンスとして、Linac エンドにて 20mm.mrad 以 下が要求されている。Linac には2種類の電子銃が存 在する。一つは、高電荷電子ビーム(10nC)を生成す る熱電子銃であり、主に陽電子を生成する目的で用い られる。陽電子ビームは、セクター1でのタングステ ンターゲットに 10nC の電子を衝突させることで生成 される。その後、陽電子は damping ring (DR) に輸送 され、エミッタンスが減衰される。DR は Phase2 から 稼働予定である。最終的に、陽電子は 4GeV まで加速 され SuperKEKB の LER(Low Energy Ring) に入射され る。もう一つのカソードは、光カソードの RF 電子銃 であり、5nCの低エミッタンスビーム (20mm.mrad 以 下)を SuperKEKB リングへ輸送する目的で用いられれ る。この低エミッタンスビームは 7GeV まで加速され、 SuperKEKB の HER(High Energy Ring) に入射される。 運転は 50Hz、96ns 間隔の 2 バンチで行われる。

HER に入射するための電子ビームには、陽電子のた めの DR のような強力なエミッタンス減衰要素がない。 そのため、エミッタンスを保存するための研究が進めら れてきた [2, 3, 4]。エミッタンス増大は主に加速管内で 生じる wake によって引き起こされる。ビームが加速管 の軸から外れた場所を通過する場合、そのオフセット 量に依存した量だけバンチ先頭の電子から生じた wake によって後続の電子が蹴られるためエミッタンスが悪 化する。こうしたエミッタンス悪化は、加速管の中心 を通るような軌道をステアリングで探し出すことであ る程度抑制することができる。しかし、4 極磁石や加 速管のミスアラインメントだけでなく、電磁石の磁場 やビームのジッターによってもエミッタンスは増大す る。我々は、現実的な4 極磁石や加速管のミスアライン メント、4 極磁石、ステアリング磁石の磁場ジッター、 ビーム位置ジッターによるエミッタンス増大の評価を 行った。

Figure 1: Schematic layout of the SuperKEKB injector linac.

2. シミュレーションの設定

SuperKEKB 入射器のセクター C からセクター5 ま で、加速管内の縦と横の短距離 wake 場 [5] を考慮した トラッキングシミュレーションを行った。短距離の wake 場のみを扱うのは、入射器で運転されるパンチ間隔が 96ns かつ S-band 加速管のみで構成されていることか ら、それ以上の中距離、長距離の wake 場を十分無視で きるためである。このレポートでは、シミュレーション は Strategic Accelerator Design[6] で行われた。低エミッ タンスチューニングの手順は以下のように行った。

BPM の測定値が0となるようにステアリングを用いて軌道補正

^{*} seimiya@post.kek.jp

Parameter	Value	Unit
Initial emittance	10	mm.mrad
Initial charge	5	nC
Initial σ_z	3/2.35	mm
Initial δ	0.004	-
# of initial particles	40000	-
Distribution	Gauusian	-
S-band accelerator aperture	10	mm

Table 1: Basic parameter set. Aperture values indicate the radius. δ is relative momentum deviation.

 C セクター始めの4つのステアリングを用いて低 エミッタンスとなるような値を探す(オフセット インジェクション)

入射器では、BPM のリファレンスポイントは Quad-BPM 法により4極磁石の磁場中心で較正されている[7]。シ ミュレーションは BPM と最寄の4極磁石が同じ量だけ ミスアラインメントしているとして行った。現実的には BPM のリファレンスポイントと4 極磁石の磁場中心は、 およそ 50µm 程度のずれがあることが 3BPM で確かめ られている [8,9]。後に図示するように軌道補正後の軌 道はピークピークで ± 2mm 程度であるため、50μm と いう量が低エミッタンスチューニングへ及ぼす影響は 十分小さい。軌道補正は、全 BPM の測定値の二乗和が 最小になるようにステアリングの磁場値をセットする ことで行った。オフセットインジェクションは低エミッ タンスを実現できる手法の一つである [10]。エミッタ ンス増大の主な原因の一つは、加速管の中心からビー ムがオフセットすることでビームが wake 場によってオ フセット量と進行方向の位置に依存して蹴られるため である。そのため一本の加速管のみを考えたとすると、 オフセット量を0にするか、加速管の入口と出口のオ フセット量が異符号になるようにステアリングを調整 すれば良いことがわかる。つまり、オフセットインジェ クションの目的は x, x', y, y' を 4 つのステアリングで 変化させて wake によるエミッタンス増大を最小限に抑 えられる軌道を見つけることにある。シミュレーショ ンでは、5セクター最後でのエミッタンスを見つつ、最 小のエミッタンスとなるステアリング値を滑降シンプ レックス法で求めた。ここで、同じ架台に乗っている 加速管(4本)は同じミスアラインメントを仮定した。 また、ダブレット4極磁石についても同じミスアライ ンメントを仮定した。ステアリングについては、現実 で設定可能なステアリングの最大磁場を超えないよう に調整を行った。Table 1 は、このシミュレーションに おける基本パラメータである。特に断らない限り、シ ミュレーションにはこの値を使うこととし、エミッタン スは入射器 END でのエミッタンスを表すこととする。

3. エミッタンス増大

目標とするエミッタンスは入射器 END で 20mm.mrad 以下である。エミッタンス補正は、軌道補正とオフセッ トインジェクションによって行われる。4 極磁石と加 速管のミスアラインメントはガウス分布で与えており、 3σ以下の値のみを採用している。本レポートでは、エ ミッタンスは RMS エミッタンスを用いており以下のよ うに定義される。

$$\epsilon_x = \gamma \beta \sqrt{\langle x^2 \rangle \langle x'^2 \rangle - \langle xx' \rangle^2}.$$
 (1)

この式内においては、 $\gamma \ge \beta$ はそれぞれローレンツ因 子とローレンツ β を表す。

Fig. 2 は、RMS ミスアラインメントが 0.3mm のとき のシミュレーション結果の一例である。青と赤はそれぞ れ水平、垂直パラメータを表している。この図の一番 上から、それぞれエミッタンス、入射器 END までの通 過粒子数、軌道、β 関数、ディスパージョン、相対的運 動量偏差、バンチ長、4 極磁石のミスアラインメント、 加速管のミスアラインメント、ステアリング磁石の K 値を表している。セクター1の中心付近からエミッタ ンスが増加しているが、これはその場所に設置してあ るシケインによってディスパージョンが生じたためと 考えられる。

Figure 2: An example of beam parameters from sector $C{\sim}5$ with 0.3mm RMS misalignment of quadrupole magnets and acceleration cavities.

3.1 ミスアラインメント

RMS ミスアラインメントが 0.1mm, 0.2mm, 0.3mm で あるとき、それぞれについて 60 種のミスアラインメン トセットについてエミッタンス補正を行った。このと き、ジッターは無いとした。ジッターについては次の サブセクションで扱う。Fig. 3 は水平エミッタンス vs. 垂直エミッタンスをプロットしたものであり、左図が1 バンチの電荷が Phase2 時の 2nC、右図が Phase3 時の 5nCの場合である。2nC時には0.3mmのミスアライン メントでもエミッタンス増大はほとんど問題にならな いが、5nC時には大きく影響することがわかる。5nCの 際、RMS ミスアラインメントが 0.3mm の場合、エミッ タンスが 20mm.mrad を超えるものが存在する。一方、 0.1, 0.2mm の場合、エミッタンスが 20mm.mrad を超え るものは存在しない。そのため、Phase3 では少なくと も 0.2mm 程度以下に RMS ミスアラインメントを抑え る必要があることがわかる。(十分密にステアリングが 配置されていればエミッタンス成長を抑えることは可

能であるが、現実にはそうなっていないためどうして もエミッタンス成長が生じてしまう。)

Figure 3: Emittance growth at the linac end for 60 random seed in each RMS misalignment in case of 2nC and 5nC.

Fig. 4 は、加速管もしくは4 極磁石の RMS ミスアラ インメントを 0.1mm に固定した際、固定しない方の値 を 0.1, 0.2, 0.3mm と変化させた時のエミッタンスをプ ロットしたものである。どちらもエミッタンス成長に寄 与するが、4 極磁石のミスアラインメントによるエミッ タンス成長の影響が大きい。これは、4 極磁石のミスア ラインメントによって軌道が乱され、より大きな軌道 をもつビームが加速管を通過してしまうためと考えら れる。つまり、加速管と4 極磁石の軸が一致していな いと、エミッタンス成長してしまうと考えられる。

Figure 4: Emittance growth at the linac end for 60 random seed in each RMS misalignment in case that quadrupole or accelerator cavity misalignment is fixed to 0.1mm. "MA" is MisAlignment.

3.2 ミスアラインメントとジッター

100種のジッター(ステアリング、4極磁石の磁場ジッ ター or ビーム位置ジッター)について、前セクション と同様に 60種のミスアラインメントにおけるエミッタ ンス補正を行った。与えたジッターの大きさは以下で ある。

- K_Q 値ジッター / 最大 K_Q 値= 0.32% (peak-peak).
- *K_{ST}* 値ジッター / 最大 *K_{ST}* 値= 0.08% (peak-peak).
- ビーム位置ジッター = 100µm (ガウス分布).

ただし、 K_Q と K_{ST} はそれぞれ 4 極磁石、ステアリン グ磁石の K 値を表す。 Fig. 5 は、ステアリングと4 極磁石の K 値のジッター が存在する場合のエミッタンスを示しており、黒点は 100 種のジッターのエミッタンス平均値を表したもので ある。赤ラインはさらに 60 種のミスアラインメントに 対するエミッタンスの平均値をプロットしたものであ る。黄点はジッターがない場合の 60 種のミスアライン メントに対するエミッタンスの平均値である。4 極磁石 の磁場ジッターによる影響よりも、ステアリングの磁 場ジッターによる影響が大きく、ジッター量も0.08%と 小さいことから高精度なステアリング電源が必要とな る。RMS ミスアラインメントが0.2mmの際でも、上記 のジッターが存在する場合 20mm.mrad 以下の達成が確 実ではないことがわかる。

Figure 5: Emittance growth averaged for 100 kinds of jitters (K value) about 60 misalignment.

Fig. 6は、ビーム位置ジッターが存在する場合のエ ミッタンスを示しており、黒点、赤ライン、黄点はFig. 5と同様である。図中の3つのヒストグラムは、それ ぞれの RMS ミスアラインメントにおける 60 × 100 種 のエミッタンスをヒストグラム化したものである。100 種のジッターにおけるエミッタンス平均値を見る限り、 ビーム位置ジッターが 100µm 以下ならば RMS ミスア ラインメントが 0.2mm でもおおよそ達成できるように 感じるが、ヒストグラムを見ると、ミスアラインメン トが 0.1mm でも分布の裾が 20mm.mrad を超えている ことがわかる。先ほどのステアリング、4 極磁石のジッ ターに関しても同様のことが言える。本レポートでは 議論しないが、どの程度ならば 20mm.mrad を超えても 許容されるのか今後調査を行う必要がある。また、ビー ムアングルジッターについて考慮していないため、許 容ビーム位置ジッター量はより制限されると考えられ る。これについても、今後調査予定である。

Fig. 7 は、電荷ジッターが 2%存在する際のエミッタ ンスを示したものであり、黒点、赤ライン、黄点は Fig. 5 と同様である。赤ラインと黄点がほぼ同じであること から、2%程度の電荷ジッターによるエミッタンスへの 影響は無視できる程度の小さいことがわかる。

3.3 測定されたミスアラインメント

入射器では、定期的に加速管を乗せる架台の位置変 化を Si フォトダイオード (PD) で測定している。最近 は要所要所に自動で架台の位置を測定する自動 PD も 導入され、年月によって架台がどのように動いている

Figure 6: Emittance growth averaged for 100 kinds of beam position jitters in each 60 kinds of misalignments.

Figure 7: Emittance growth averaged for 100 kinds of bunch charge jitter in each 60 kinds of misalignments.

か測定が行われている [11]。Fig. 8 の左端の図は、PD から推定した加速管のミスアラインメントを表してお り、横軸はセクター C からセクター 5 までの距離、縦 軸がミスアラインメント量を表している。ここでは、例 として 2015 年 4 月と 2016 年 1 月に行った 2 種を載せ た。架台から見た加速管のミスアラインメントは、架 台自体のミスアラインメント量より小さいと考えられ るため、架台から見た加速管の RMS ミスアラインメン トは 0.1mm と仮定しエミッタンス補正を行った。つま り、加速管の RMS ミスアラインメントは以下のように 記述できる。

$$\sigma_{total} = \sqrt{\sigma_{frame}^2 + \sigma_{ACC}^2},\tag{2}$$

ここで、 σ_{frame} は架台の RMS ミスアラインメント、 σ_{ACC} は架台から見た加速管の RMS ミスアラインメン トを表す。また、4 極磁石の RMS ミスアラインメント として 0.2mm を仮定し、ジッターについては考慮して いない。左から 2~4 番目の図は、上記のミスアライン メントが存在する際の水平 vs. 垂直方向のエミッタン スを表しており、100 種のミスアラインメント群につい てプロットしたものである(黒点)。一方、セクターを またいだジョイント部付近の架台において大きな位置 変化が測定されており、どの程度の変化が許容できる かを調査するためにジョイント部付近の架台のミスア ラインメントを2倍、4倍、8倍にしてエミッタンス補 正を行った。その結果が、それぞれ左から2番目、3番 目、4番目の図の赤点に対応している。デフォルト、2 倍、4倍の結果は、およそ20mm.mrad以下に収まって いるが、8倍の場合には20mm.mradを超えるものがい くつも確認できる。ジョイント部における加速管のミ スアラインメントは、現状の4倍程度ならば許容でき る可能性が高いことがわかる。

Figure 8: Frame position data measured by Photo-Diode (left-most) and emittance at the linac end in case of default measured misalignment, 2 times misalignment at the sector joint, 4times misalignment at the sector joint, and 8 times at the sector joint.

4. まとめ

4 極磁石と加速管にミスアラインメントが存在する場 合、4 極磁石とステアリング磁石の磁場ジッター、ビー ム位置ジッターが存在する場合の低エミッタンスチュー ニングシミュレーションを粒子トラッキングシミュレー ションで行った。その結果から、目標であるエミッタ ンス 20mm.mrad 以下を達成するためには、少なくとも 4 極磁石と加速管の RMS ミスアラインメントが 0.2mm 以下であること、4 極磁石と加速管の中心軸が 0.2mm 以下で一致していること、ステアリングの磁場ジッタ が最大磁場に対して 0.3%以下であること、ビーム位置 ジッターが100μm以下であることを満たす必要がある。 本レポートのシミュレーションにおいては、ビームア ングルジッターを考慮していないため、ビーム位置ジッ ターはさらに抑える必要があると考えられる。現在の 入射器におけるビーム位置ジッターは 100~200 µ m であるため、位置ジッター減の特定と抑制が必須であ り、現在調査が進められている。一方、電荷ジッターが 2%程度存在してもエミッタンスへの影響は無視できる ほど小さいことがわかった。PD 測定も積極的に行われ ており、現実に即したシミュレーションが可能となり つつある。

5. 謝辞

This work was partly supported by JSPS KAKENHI Grant Number 16K17545.

参考文献

- [1] KEKB Design Report, KEK Report 95-7.
- [2] L. Zang et al., Proc. of IPAC2011, San Sebastian, Spain (2011).
- [3] H. Sugimoto et al., Proc. of IPAC2012, New Orleans Louisiana, USA (2012).
- [4] S. Kazama et al., Proc. of IPAC2015, Richmond, VA, USA (2015).
- [5] K. Yokoya, "Short-Range Wake Formulas for Infinite Periodic Pill-Box", 1998.
- [6] Strategic Accelerator Design(SAD) home page, http://accphysics.kek.jp/SAD/
- [7] M. Masuzawa, et al., Proc. of EPAC2000, Austria Center Vienna.
- [8] T. Suwada et al., Nuclear Instruments and Methods in Physics Research A 440, pp.307-319 (2000).
- [9] M. Satoh, et al., Particle Accelerator Society of Japan, WEPS097, 2012.
- [10] A.W Chao, B. Richter Meth. A 178, 1 (1980).
- [11] T. Suwada, et al., Particle Accelerator Society of Japan, TUP134, 2016.