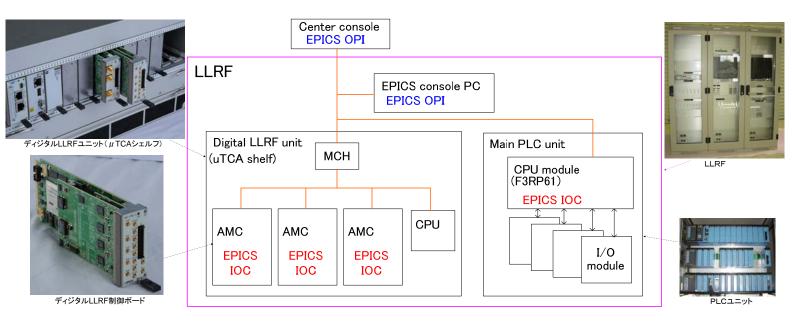
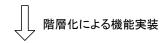
THPS087



EPICS EMBEDDING FOR SUPERKEKB LLRF COMPONENTS

Hisakuni Deguchi^{#,A)}, Kazutaka Hayashi^{A)}, Kazunori Akai^{B)} , Shinichiro Michizono^{B)}, Kazuro Furukawa^{B)} , Jun−ichi Odagiri^{B)}, Tatsuro Nakamura^{B)} A) Mitsubishi Electric TOKKI System Corp., 8-1-1 Tsukaguchi-honmachi, Amagasaki, Hyogo, 661-0001 B) High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801

SuperKEK向LLRFコンポーネントへのEPICS組込み


SuperKEKBのLLRF用に、ディジタル制御をベースとした新しいLLRF制御システムを設計した。標準化とオープンソースの利用をキーワードとしてし ており、cERLやSTFのLLRFにも対応させた。ディジタルLLRF制御ボードは、 μ TCAシェルフに装着するAMC規格を採用した。現状のKEKB LLRF と同様に、加速器制御(上位)システムとのインターフェースとして、LLRFにはEPICS IOC 機能の付与が 求められている。今回のLLRF制御ボード (AMC)の特徴は、AMC自体がEPICS IOCとして動作する事にある。その利点と、AMCへのLinux及びEPICS組込みについて報告する。

- ■LLRFコンポーネントの標準化(共通化) ⇒AMC、uTCAシェルフを採用した。
- ■オープンソースの利用 ⇒EPICSを動作させるOSとして Linux(Wind River Linux 2.0)を採用した。
- ■EPICS IOCに要求される機能

⇒H/W(FPGAレジスタ)の制御/モニタ

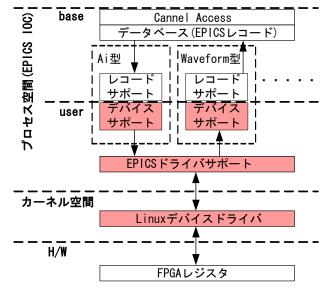
- ・制 御:RFフィードバック処理のパラメータ設定
- ・モニタ: 蓄積したI/Qデータの読込み

デバイスサポート

H/Wの制御/モニタ処理を実装⇒INP/OUTフィールド等で 指定されるアドレスを読書き

EPICSドライバサポート

H/Wアクセスポインタを保持⇒デバイスサポートが参照


Linuxデバイスドライバ

mmapシステムコールを実装⇒H/Wアクセスポインタを取得

EPICS IOC-core を LLRF制御ボード(AMC)に載せた。

これによって、LLRFサブシステムの制御が、上位システム(加速器システム)と 同じ手法・同じレベルで実現。

- ・LLRFコンポーネント間の通信プロトコルは、実績あるChannel Access (CA)。
- ・LLRFの制御ソフトウエアを、EPICSベースで構築し、可視性が高まる。
- ■高機能な制御システムを、短い開発期間で実現
- ■ソフトウェアの柔軟性・拡張性・保守性・堅牢性が高まった

EPICS: Experimental Physics and Industrial Control System

IOC : Input Output Controller OPI : Operator Interface AMC : Advanced Mezzanine Card uTCA : Micro Telecommunications Computing Architecture

MCH : MicroTCA Carrier Hub FPGA: Field Programmable Gate Array