

Status of SuperKEKB Accelerators

Makoto Tobiyama (KEK Accelerator Laboratory) for SuperKEKB Accelerator Team

Super

1500₁

(The second seco

L ×10³⁴ (cm⁻²s⁻¹)

0

3

0

delivered recorded

03/03

03/17

int. L/day (fb⁻¹)

LER

HER

......

2022ab Run 1600 - Plan 1000 Plan 1400 Achieved 1200 1000 1000 600 1000 400 200 0

02/27 03/09 03/19 03/29 04/08 04/18 04/28 05/08 05/18 05/28 06/07 06/17

2022

03/31

04/14

04/28

05/12

05/26

06/09

06/23

Vacuum scrubbing machine study 500 ↔ ↓

off-momentum $\beta_y^* = 0.8 \ mm$

diddu

2022					
Integrated luminosity	Recorded	Date	Delivered	Date	
Shift (pb ⁻¹)	958.1	April 24, swing, 2022	1035.9	April 22, swing, 2022	
1 days (fb ⁻¹)	2.503	April 22, 2022	2.912	June 11, 2022	
7 days (fb ⁻¹)	15.001	April 18 - April 24, 2022	16.599	April 18 - April 24, 2022	

184 fb-1

160 fb-1

Especially on 2022b runs

- Strongly required to get higher "peak" luminosity for the 10years evaluation process of MEXT.
 - Decided to skip various machine studies to understand machine.
 - Could not repair damaged collimator heads.
 - Needed to skip the regular maintenance.

Due to crazily rising electricity costs, we had no choice but to discontinue operation and enter LS1.

- The rising of electricity costs is continuing- we are doing our best to reduce the standby power after stopping the operation of 2022b.
 - (Almost) stop the water pumps.
 - Stop the air conditioning of the power supply buildings and the arc section of the tunnel.
 - Tuning off the lights of the tunnel in the night.
 - 25Hz operation of Linac.

Achieved up to now ..

- Peak luminosity : 4.65 x 10³⁴ cm⁻²s⁻¹ (4.71 x 10³⁴ cm⁻²s⁻¹ w/o Belle II data taking)
- Integrated luminosity : 424 fb⁻¹ (491 fb⁻¹)
- Peak currents : 1.46 A (LER) / 1.14 A (HER), 2346 bunches (2-bucket spacing)
- β y*: 1 mm (0.8 mm) << bunch length ~6 mm -> proof of the nano-beam scheme
- Crab waist scheme has been applied (80 % in the LER, 40 % in the HER).
 - Iuminosity improvement
- Beam-Beam parameter : 0.035 at 0.7 mA (0.045 at 1.1 mA for small number of bunches)
- Bunch-by-bunch FB tuning (gain, noise reduction) in the HER ->luminosity improvements
- Bunch-by-bunch FB tuning (number of taps) in the LER ->suppress single bunch blowup, luminosity improvements
- Chromatic X-Y coupling correction with rotatable sextupoles in the LER ->luminosity improvements

- Long-term drift of QCS magnetic field (beta-beat) <-reduced by new QCS initialization procedure</p>
- Orbit deviation due to IP knob tuning (beta-beat) <- suppressed with QCS corrector (ZHQC2RP)
- Increase of positron charge for the LER injection : 3 nC at the end of e+ beam transport line
- 2-bunch injection for the LER and HER ->improve injection efficiency
- Adjustment of injection orbit in the HER (septum, kicker) ->improve injection efficiency (not enough)
- Reduce leakage orbit from injection kickers <- reduced by additional inductance for the coils

Operation Statistics

Physics Run
Machine Tuning
Machine Study
Troubles
Aintenance, Others

Operation statistics 2019 -2022

Machine parameters

Machine Parameters

	SuperKEKB : June 8, 2022		SuperKEKB : May 22, 2022		Unit	
Ring	LER	HER	LER	HER		
Emittance	4.0	4.6	4.0	4.6	nm	
Beam Current	1321	1099	744	600	mA	
Number of bunches	2249		1565			
Bunch current	0.587	0.489	0.475	0.383	mA	
Horizontal size σ_x^*	17.9	16.6	17.9	16.6	μm	
Vertical cap sigma Σ _y *	0.303		0.250		μm*1	
Vertical size σ _y *	0.215		0.177		μm*²	← twice the size o COVID-19 virus
Betatron tUnes v _x / v _y	44.525 / 46.589	45.532 / 43.573	44.525 / 46.589	45.532 / 43.574		sills
β _x * / β _y *	80 / 1.0	60 / 1.0	80 / 0.8	60 / 0.8	mm	State of
Piwinski angle	10.7	12.7	10.7	12.7		
Crab waist ratio	80	40	80	40	%	
Beam-Beam parameter ξ_y	0.0407	0.0279	0.0309	0.0219		
Specific luminosity	7.21 x 10 ³¹		8.74 x 10 ³¹		cm ⁻² s ⁻¹ /mA ²	
Luminosity	4.65 x 10 ³⁴		2.49 x 10 ³⁴		cm-2s-1	

6

 $^{\star1)}$ estimated by luminosity with assuming design bunch length $^{\star2)}$ divide \star1 by $\surd2$

Sudden beam loss and damage to the vertical beam collimators

- Damaged collimator(s) increases transverse impedance, which makes the threshold of TMCI much lower.
- Not easy to increase the bunch current.
- Will be presented in the Ikeda-san's talk.

Beam blowup in the LER

- Some (or most) of the sources might be coming from the higher transverse beam impedance.
- IR Optics (β y*) modulation due to stored current (HER)
 - Beam-line deformation, especially around the strong sextuplole magnets.
- Shorter beam lifetime, especially in LER
- Injection efficiency and stability of the injector
 - Emittance growth coming from beam transport line
 - Injection background

Sudden beam loss

Without growing the transverse motion, some part of bunches drops within 1-2 turns.

- Occurs in both LER and HER, but the damage in LER is much greater (QCS quench, vertical collimator damage, etc)
- After damaging the collimator heads, many unwanted side-effects happen.
 - Much larger background.
 - Larger transverse beam impedance.

Started ITF-sudden beam loss subgroup.

VXD diamond at IP
BOR/BCM at Fuji

Beam(bunch) current

- Beam loss occurs in both HER and LER, but the damage to the hardware is particularly large when loss occurs in LER.
- ▶ It is likely to occur when a certain bunch current is exceeded.
- We don't know if it will happen even with a single beam operation, low current beam because we haven't operated for a long time.

Beam blowup in LER

Bunch current dependent- TMCI related.

- With the increase of the bunch current, the synchro-betatron sideband (vy+vs) appears (and will finally merge).
- Also coupled with the side-effect of transverse BxB feedback system.
 - Large phase shift coming from the many-tap filter (10 tap FIR) reduced the gain margin of the system, finally excited dipole oscillation at the sideband.
 - By reducing the number of FIR taps (10 ->4), the phase shift in the digital filter was mitigated and the dipole oscillation at the sideband was suppressed.

- The threshold seems depend on the aperture of vertical collimators (transverse impedance), selection of vertical tune, vertical chromaticity, BxB FB settings + damage of the head of vertical collimator.
- With the severe damage of the heads of the vertical collimator, the transverse impedance has been increased and the threshold had dropped less than 0.8mA/bunch.
- Non-linear collimator should help to reduce the transverse impedance.

H. Sugimoto H. Koiso

The SR heating deforms the beam line.

The horizontal orbit deviation induces tune shift and beta-beat. As the result, β_y^* also changes. The orbit deviation in the local chromaticity correction (SLY) is always in the outward direction of the ring. This implies a squeezing of β_y^* . The HER is larger effects rather than the LER.

We adopted the local orbit feedback by using local bumps at the strong sextupoles since the end of May, 2022.

Long Shutdown 1

QCS-R cryostat leak hunting

QCS-R and L have been retreated.

• Leak check on QCS-R cryostat has been made

Leak area of QCS-R

• Problem of HER injection

- Wall can be an obstacle to injection.
 - A wall should be placed between beam channels for stored beam and injected beam.
 - · Injected beam orbit is too close to the wall.
 - High levels of radiation detected at the injection BPM chamber indicates that the injected beam hits the wall.
 - · It is hard to modify the injection beam orbit.
 - \Rightarrow it is necessary to enlarge the horizontal aperture

of the injection channel.

- What is planned during LS1
 - Replacement of three beam chambers with new ones.
 - Update of injection BPM
 - \Rightarrow More precise injection tuning

(LS1) upgrade for Injector

- Fast pulse magnets will be installed at the J-arc and the sector 5 to control the orbit of two bunches independently.
- Large aperture pulse Q will be installed at the end point of J-arc to optically match the e- and e+ (primary high charge e-) beam independently.
- Install 4 sets of large aperture pulse Q magnets around 1-2 sectors to make optical matching for both high energy e- and low-energy e+ beams and to reduce the emittance growth consequently.

Design study for LS2 upgrade

- We are revisiting the investigation of IR (including QCS) section to achieve much higher luminosity.
- Beam optics study with possible QCS design.
- QCS group are starting considering magnet re-design.
- Vacuum group and QCS group are working for the possible mechanical design.

Option-3

QC1P cross section

Summary

- Peak luminosity of 4.7x10³⁴cm⁻²s⁻¹ has been achieved
- Demonstrated stable operation over 1A in the LER (with smaller bunch current less than 0.7mA/bunch)
- Sudden beam loss is serious challenge to increase luminosity and beam current, up to now.
- Many other challenges:
 - Beam blowup in LER
 - Beam line deformation with HER beam current
 - Shorter beam lifetime; both dynamic aperture and physical aperture (beam collimators), need to clarify the effect of crab waist.
 - Injection efficiency, long-term stability of the injector.
- Several upgrade items during long shutdown 1.
- Re-starting design study for LS2 upgrade.